
Artificial Intelligence 53 (1992) 125-157 125
Elsevier

A mathematical treatment of
defeasible reasoning and its
implementation

G u i l l e r m o R. S imar i a n d R o n a l d P. L o u i

Department of Computer Science, Washington University in Saint Louis,
Campus Box 1045, One Brookings Drive, Saint Louis, MO 63130-4899, USA

Received February 1990
Revised April 1991

Abstract

Simari, G.R. and R.P. Loui, A mathematical treatment of defeasible reasoning and its
implementation, Artificial Intelligence 53 (1992) 125-157.

We present a mathematical approach to defeasible reasoning based on arguments. This
approach integrates the notion of specificity introduced by Poole and the theory of warrant
presented by Pollock. The main contribution of this paper is a precise, well-defined system
which exhibits correct behavior when applied to the benchmark examples in the literature.
It aims for usability rather than novelty.

We prove that an order relation can be introduced among equivalence classes of
arguments under the equi-specificity relation. We also prove a theorem that ensures the
termination of the process of finding the justified facts. Two more lemmas define a reduced
search space for checking specificity.

In order to implement the theoretical ideas, the language is restricted to Horn clauses for
the evidential context. The language used to represent defeasible rules has been restricted in
a similar way.

The authors intend this work to unify the various existing approaches to argument-based
defeasible reasoning.

1. Introduction

Recent courage to deviate from standard practice in nonmonotonic reason-
ing has led to an influx of formalisms. Each achieves nonmonotonicity in a
first-order language where entailment is not based on fixed points, nor on
model minimization. Most avoid intensional contexts by semantic ascent, 1 thus
supplementing the proof theory in the metalanguage. This obviates the need
for model-theoretic accounts of new syntax, since there is no new syntax.

1 Quine's phrase, in private communication.

0004-3702/92/$05.00 © 1 9 9 2 - Elsevier Science Publishers B.V. All rights reserved

126 G.R. Simari, R.P. Loui

Inspiration has come from conditional logics (Nute [9, 10], Delgrande [1],
Glymour and Thomason [3]) or inductive logics. In the latter case, both
induction's form (Loui [7], Pollock [12]) and its effect (Geffner and Pearl [2],
Neufeld [8]) have been copied. All of the resulting systems incorporate a
specificity defeater, analogous to the subclass defeater in inheritance with
exceptions (since Touretzky [20]).

Some of these authors have found use for objects called arguments (also
theories). Other systems are based on irrelevance. This paper is concerned with
those based on arguments.

Arguments are prima facie proofs that may make use of assertions that one
sentence is (defeasible) reason for another. They indicate support for a
proposition, but do not establish warrant once and for all; it matters what other
counterarguments there may be. Arguments may have stucture (Loui [7],
Pollock [12]) or may just be collections of supporting sentences (Poole [14],
Geffner and Pearl [2]). There is widespread agreement that arguments in these
systems generalize paths in inheritance systems.;

As is the case in inheritance, there is a "clash of intuitions" that has resulted
in a plethora of theories. There are at present few ways of classifying the
systems. Our intent, in defining yet another system, is not to add to the
inventory. In fact, this paper attempts to bring together the prominent systems
based on arguments. A system is defined that takes its form from Loui (which
in turn evolved from that of Kyburg [6]) and which combines the rules of Poole
and of Pollock. For most of the AI audience, this will effectively condense
three systems into one, remedying deficiencies of each.

More importantly, this system is defined in a mathematically more rigorous
manner. Past definitions (especially Poole's and Loui's) did not have the
precision nor the completeness to serve as a foundation for future mathemati-
cal work. It is no accident that the statement of the system here allows concise
proof of nontrivial properties.

1.1. Poole and Pollock combined

Poole treats specificity, i.e., a comparative measure of the relevance of
information, in an elegant and usable way, but does not describe adequately
when to apply his specificity comparator to interactions among arguments. On
the other hand, Pollock treats the interaction among arguments properly while
rejecting specificity. Pollock rejects specificity both as a generalization of the
subclass defeater and as a useful shorthand. This places him in an extreme
minority in the defeasible reasoning community.

In our view, Poole and Pollock fail to develop the best ideas in their systems
to produce a system of lasting usefulness to the knowledge representation

General discussion during the Workshop on Defeasible Reasoning with Specificity and Multiple
Inheritance, St. Louis, MO (1989).

Mathematical treatment of defeasible reasoning 127

community. Poole [13] has implemented a system of defeasible reasoning
which does not address interactions among arguments. Pollock has taken his
research in a direction which is too general for AI's uses.

The system defined here combines the ideas of the two. But the main
contribution of this paper is a precise, well-defined system which exhibits a
correct behavior when applied to the benchmark examples in the literature. 3

We take the knowledge of agent a to be divided into a set of defeasible rules
zl and a set of well-formed formulas (wffs) 2[in the standard formal logic
sense. The set Y{ is further divided into (1) grounded wffs: the contingent part
of Y{; and (2) ungrounded wffs, the necessary part of 2[. Evidence suggests new
tentative conclusions; a potential conclusion p will be suggested when it is
consistent with 2{ and has a supporting subset of za which, in conjunction with
Y{, can derive p without deriving a contradiction at the same time.

Accepting or rejecting p is a matter of comparing arguments supporting p,
their counterarguments, their rebuttals, and so on. p must be consistent with
2/, but its interaction with subsets of A could be more interesting. If a subset S
of A supports p, we will say that there exists a defeasible derivation of p from
S. The subsets form argument structures, and are ordered according to Poole.

Poole claims his specificity relation is based on Popperian ideas, but some
find it unintuitive or lacking justification. We view it as a convention: arguably,
the most useful convention to date. It is based on the four-part observation
that

(1) two conflicting arguments were made;
(2) sometimes one argument can be made while the other cannot;
(3) the reverse is not true;
(4) thus, one argument is more particular about the current evidence than

the other; it is more specific.

Extrapolating from the total evidence requirement of inductive logic, being
more particular about the evidence makes an argument stronger. Another way
to rationalize the rule is pragmatic: if the more specific argument does not
defeat the less specific, then it is never an effective argument, since the less
specific argument can always be made as a counterargument whenever the first
argument can be made. This is unacceptable for representing knowledge.

Pollock's method of defining which arguments survive counterargument and
actually justify their conclusions is appealing. Essentially, it propagates defeat
from arguments that have no defeaters, and it could be defined in any of a
number of ways. We retain Pollock's original inductive step to recognize his
contribution, but the rule could be expressed as TMS-like labeling, or as
A N D - O R graph evaluation. We have two kinds of labels while Pollock has
only one: this is a purely technical variation on Pollock that we introduce

3 Actual solution of two dozen such examples can be obtained from the authors.

128 G.R. Simari, R.P. Loui

because defeat is implicit in this theory, while it is explicit in Pollock's. It is the
implicit defeat arising from comparison of specificity that makes the hybrid
system attractive for actual use.

2. Arguments and specificity

We will construct a formal system fl_ with the objective of providing a
language in which to represent the knowledge of a given agent a and in which
to perform defeasible reasoning.

The language of ~_ is composed of a first-order language LP, plus a binary
metalinguistic relation among members of 2£. Any axiomatization of ~ will do
for our purposes, and we will use the standard connectives and punctuation
symbols freely without explicitly introducing them. We assume that the rules of
inference attached to the axiomatization are modus ponens and generalization.
The members of the metalinguistic relation are called defeasible rules and they
have the form a > - / 3 , where a and/3 are well-formed formulas (w):s) in L¢,
which must contain free variables, e.g., they are nonclosed wffs. The relation
" > - " among L£'s wffs is understood as expressing that "reasons to believe in
the antecedent a provide reasons to believe in the consequent /3" . Variables
with the same name on both sides of the rule are assumed to be the same. An
instance of an open defeasible rule is obtained by replacing all the flee
variables by appropriate constants. When no confusion is possible we will use
the term defeasible rule to refer to the open defeasible rule and to its grounded
instances.

The set Sent(~) of sentences of ~ , that is the set of closed well-formed
formulas in ~ , can be partitioned in two subsets, corresponding to necessary
and contingent information. Necessary information is the context in which
defeasible rules are provided. Although a purely syntactic distinction might not
be possible on philosophical grounds, we normally take sentences with vari-
ables or implication to be necessary. Thus, the first subset contains the
grounded sentences Sentc(~) and the second subset contains nongrounded
sentences SentN(Sg), i.e.,

Sent(~) = Sentc(3f) U SentN(~) .

Obviously,

Sentc(5£) fq Sent~(~) = 0.

The names used for the subsets reflect the view that the grounded sentences in
Sentc(S£) represent information depending on the individual constants of the
language. Those individual constants are contingent to the reality being repre-
sented. On the other hand, the sentences in SentN(Sf) are wffs containing
variables. That characteristic allows them to convey properties that single out a

Mathematical treatment of defeasible reasoning 129

class of worlds, i.e., worlds where the relations among individuals are the same
regardless of the local individuals. We choose to call these sentences the
necessary facts, because without them the world would not be as it is.

The knowledge of a is represented in IL by a pair (~(, A), where ~(is a subset
of Sent (~) , and A is a finite set of defeasible rules. The pair (Y{, A) will be
called a defeasible logic structure. Y{ represents the indefeasible part of a's
knowledge and A represents tentative information, i.e., information that a is
prepared to take at less than face value. In mapping a's reality to a subset ~ of

we obtain a partition of ~ in two subsets

~r~ = SentN(~) n Y{ , Y{c = Sen tc (~) n ~ .

Clearly, 9f = ~ y U Y{c. The only condition on ~ is consistency, i.e., 2~ ~ -± .
Sometimes, when using ~r, we will refer to it as the context, and ~r will be
considered as a set of wffs or as the conjunction of them depending on the
situation.

Having defined our knowledge representation language we need to introduce
a notion of entailment, or inference, which is somewhat different from the one
used in first-order languages. That is, given a defeasible logic structure (Y{, zl),
we need to define what other facts can be sanctioned as justified. Our formal
system introduces this notion in a way that is not axiomatic. For a complete
definition we need further develop our formalism. We will present the syntactic
part here. The rest will be introduced in the next sections.

Given a member A of Sent (~) , and set F = {A 1, A 2, . . . , An} , where each
A i is a member of ~ or a grounded instance of a member of za, we will
establish a meta-meta-relationship "~--", called defeasible consequence, be-
tween F and A in the following way. A well-formed formula A will be called a
defeasible consequence of the set F as described above, if and only if there
exists a sequence B 1 , . . . , B,, such that A = Bm and, for each i, either B e is an
axiom of ~ or B i is in F, or B i is a direct consequence of the preceding
members of the sequence using modus ponens or instantiation of a universally
quantified sentence. The grounded instances of the defeasible rules are re-
garded as material implications for the application of modus ponens. 4 The

sequence B~ B m will be called a defeasible derivation or just a derivation.
We use F F-A as an abbreviation of A is a defeasible consequence of F. If
necessary, in order to avoid confusion with the context, we write F F'~ A. We
also will write A t A ~ A instead of {A 1 A ~ } ~ A , and ~ U
T ~ A, making explicit the distinction between the context ~{ and a set T of
defeasible rules used in the derivation.

In first-order logic the above definition is enough to describe the wffs that
are theorems of F, but for us the situation is different because we need to

4 Since modus ponens is unidirectional, this does not imply reasoning by modus tollendo ponens,
or contrapositive reasoning. In fact, the latter two are not allowed in this system.

130 G.R. Simari, R.P. Loui

introduce the tentative nature of the conclusions, e.g., we need to give a
criterion that will allow us to prefer one conclusion over another. That
criterion will be the specificity relation among arguments. We will now
introduce the formal notion of arguments and later we will define the specificity
relation among those formal objects.

2.1. Arguments

Derivations, as defined above, make use of some grounded instances of
defeasible rules from a. The set of grounded defeasible rules characterize the
derivation and we will give the name argument basis to that set. In order to
facilitate the following discussion we introduce the set /1 ~ of all grounded
instances of members of A produced by using the individual constants in 5~.

Definition 2.1 (Preliminary). Given a context Y{= YdN U 5r{ c and a set A of
defeasible rules we say that a subset T of A ~, is an argument for h E Sentc(~)
in the context 5~{, denoted by (T, h) ~ , if and only if:

(1) ~{U T ? h ,
(2) u T
The pair (T, h) :~r will be called an argument structure.

Remark 2.2. When possible we will drop the reference to the context and we
will write (T, h) meaning (T, h)~ . We will refer to the collection of all
possible argument structures as AStrue(A ~) or just AStruc. There is a dis-
tinguished argument, (0, ~) , for any context Y{ with finitely representable
closure; i.e., no rules are necessary to support the conjunction of the atoms of
the deductive closure (Y{~) of the knowledge in 5f. Finally, for (T, h) we will
assume that the set T is minimal, or nonredundant in the sense that it does not
contain any rule that is unnecessary for the inference of h. This is a sort of
"Occam's razor" principle for arguments.

Definition 2.3 (Revised). Given a context ~ = YdN U Ydc and a set A of defeas-
ible rules we say that a subset T of A ~, is an argument for h E Sentc(~) in the
context ~ , denoted by (T, h) x , if and only if:

(1) Y/'U T ~ h ,
(2) x u
(3) ~I'T'CT, Y{UT'~--h.

Example 2.4. Let 9{ = {P(a), Q(a)} and

A : {P(x) >-- R(x), Q(x) v R(x) >- H(x), M(x) >- N(x)}

be the context and defeasible rule set respectively. Therefore the subset T of
grounded instances of defeasible rules in A,

Mathematical treatment of defeasible reasoning 131

T = {P(a) > - R(a), Q(a) ^ R(a) >-- H(a)} ,

is an argument structure for H(a), i.e. { T, H(a)) is an argument structure.

Definition 2.5. Let (T, h) be an argument structure for h, and (S, j} an
argument structure for] such that S_C T. We will say that (S,]) is a
subargument of (T, h) and use the notation (S,]) _ (T, h) , overloading the
symbol "C_".

Example 2.6. Given any argument structure (T, h}, the two argument struc-
tures (0, 5~[~) and (T, h} are two trivial subarguments of it.

Example 2.7. In the conditions of the above example,

S1 = {e(a) > - R(a), O(a) ^ R(a) >- H(a)}

is an argument for H(a), and

S2 = (e(a) >-- R(a)}

is an argument for R(a). We have the following relations among the argument
structures: (S~, H(a)) C ($1, H(a)} and ($2, R(a)) C (S~, H(a)}.

Sometimes it will be necessary to talk about the defeasible rules in terms of
their antecedents and consequents. The following definitions introduce three
operators for this purpose.

Definition 2.8. Let T be a finite subset of A ~. We will introduce two operators
over sets of defeasible rules. They are the operator An(.), which applied to T
will return the set of antecedents of its rules, and Co(.), which applied to T will
return the set of consequents of its rules. Sentc(~) is normally restricted to
conjunctions from An(A ~).

Example 2.9. Given the argument

T = {A(r)>-- D(r), B(r) ^ O(r)>--- C(r), C(r)>--- E(r)} ,

we have

An(T) = {A(r), B(r), D(r)}, Co(T) = {D(r), C(r), E(r)}.

It is also useful to have access to the set of literals used in the defeasible
rules of an argument structure.

Definition 2.10. Let (T, h) be an argument structure. Then the operator Lit(.)
will return the set of literals in T with the exception of h, i.e., Lit((T, h}) =
An(T) U Co(T) - {h}.

132 G.R. Simari, R.P. Loui

Example 2.11. Given the argument T as in Example 2.9, we have
Lit((T, E(r)))= (A(r), B(r), C(r), D(r)}.

2.2. Specificity

Having defined these objects we would like to establish certain binary
relations on AStrue(A *) in such a way that it would help us to choose the
"better" argument structure that supports a conclusion. The following defini-
tions, essentially Poole's [14], will characterize this relation.

Definition 2.12. Given two argument structures (T~,h~) and (T2, ha) in
AStrue, we say that T~ for h~ is strictly more specific than T 2 for h 2 denoted by

(Tt, hi) >spec (T2, h2) ,

if and only if:
(1) VeE Sentc(~g) such that 5(N U (e) U T~ ~ h~ and 9{ N U {e} ~ h~ also

Y{y U {e} U T 2 ~ h2, and
(2) 3e E Sentc (~) such that:

Y{N U {e} U T 2 ~ h 2 (activates T2),

Y{N U (e} U T l ~ h 1 (does not activate TI),

YdN tO {e} ~- h 2 (nontriviality condition).

Remark 2.13. The term activates appearing in the definition is used with the
following meaning: together with Y(N the argument T is enough to construct a
defeasible derivation o f h.

Another important relation among argument structures is the notion of being
equally specific.

Definition 2.14. Two argument structures T~ for h 1 and T 2 for h 2 are equi-
specific, denoted by

(T,, hl) ~spec (T2, h2) ,

when the following condition holds,

Ve E Sen tc (~) ,

ST{ N U {e} U T 1 ~ h~ if and only if 5r~ N U {e} U T 2 ~ h 2 .

Finally the combination of both notions gives the following definition.

Definition 2.15. We say that an argument structure T 1 for h I is at least as
specific as an argument structure T 2 for h 2 denoted by

Mathematical treatment of defeasible reasoning 1 3 3

<T,, h,> ->spec <T2, h2),

if and only if <T e, h2) "~'~spec <T1, h,) or <T,, h,) >sp¢¢ <T2, he).

Some examples will clarify the concept.

Example 2.16. The argument structure <{A(r) ^ B(r) >- C(r)}, C(r)> is more
specific than ({ A (r) > - - 7 C(r)},-7 C(r)) because every time the first argument
can be activated to support C(r) the second also supports --1C. But, on the
other hand, A(r) alone can activate the second argument structure but does not
activate the first. So

({A(r) A B(r)>-- C(r)}, C(r)> >~pe~ ({ A (r) > - -~C(r), mC(r)>.

Example 2.17. The argument structure <{A(r) >-- ~C(r)},-aC(r)> is more
specific than the argument structure ({A(r)>-- n(r), B(r)>- C(r)}, C(r)> be-
cause every time the first argument can support --1C(r) the second also supports
C(r). But, on the other hand, B(r) alone can activate the second argument
structure but does not activate the first. So

({A(r) >-- --a C(r)}, 7C(r)> >spec ({A(r) >-- B(r), B(r) >-- C(r)}, C(r)> .

Remark 2.18. Whenever no confusion is possible we will drop the subscript
"spec" in the symbols " > > " and " ~ " writing instead " > " , " > " s p e c ~ - - s p e c ~ s p e c

and " ~ " .

An argument and its subarguments are related by the specificity relation in a
natural, expected way.

Lemma 2.19. Let < T, h) be an argument structure and < S, j> a subargument of
(T, h > . Then < T, h> is more specific than < S, j > , i.e., < T, h) >- (S,]>.

The equi-specificity " ~ " relation decomposes AStruc into disjunct subsets of
equi-specific arguments, i.e., establishes a partition on it. This porperty is
better expressed in the following lemma.

Lemma 2.20. The equi-specificity relation among members of AStruc is an
equivalence relation.

The " ~ " equivalence relation will help us to introduce an order relation in
the set AStruc/~, i.e., the quotient set of AStruc by the equivalence relation
" = " . This order relation is induced by "_>". First, we observe that >_ defines a
quasi-ordering in AStruc, i.e., the relation is reflexive and transitive. If we lift
the relation to the quotient set AStruc/= of the equivalence classes defined by

134 G.R. Simari, R.P. Loui

"~ ' " in AStruc the new relation will define a partial order over those classes, as
is shown in the lemma below.

Remark 2.21. For all (T, h) in AStruc the notation [(T, h)] represents the
equivalence class of (T, h) in AStrue/-~.

Definition 2.22. We define the relation "_2sp~c" in the quotient set AStruc/--~ as
follows. Given [(T l, h I)] and [(T 2, h2)] in AStruc/~-,

[(T , , h ,)] 2 [(T 2, h2)] if and only if (T , , hi) ~ (T2, h2).

Again, whenever possible we will drop the "spec" subscript from "-~spec"
writing "_2".5

The introduction of the > relation of AStrue has the objective of providing a
way to select the most "appropriate" argument structure. In that sense the
following lemma establishes the fundamental property regarding order in
ASt ruc /= .

Lemma 2.23. The relation 2_ defined in AStruc /~ is a partial order.

The next lemma defines a reduced search space for checking specificity.

Lemma 2.24.* Let (Tl , h~) and (T2, h2) be two argument structures in
AStruc. Then the following conditions are equivalent:

(1) (T , , h ,) >_ (T2, h2) ,
(2) Vx ~ An(T2) , Y[N to An(T1) to T2 ~ x.

Proof.

(1) implies (2). Assume that (T~, h~) >_ (T 2, h2). Hence, (T 1, h i) is at
least as specific as any subargument of (T2, h :) . There is always a subargu-
merit, S, of (T2, h2) for any x in An(T2) (by the nonredundant property of
(T z, h2)). (T~, h 1) >_ (S, x) . Since An(T~) activates T~ for hi , it activates S
for x. Therefore, ~[N U An(T1) U T 2 ~ x for all x E An(T2).

(2) implies (1). Assume that e in Sentc(Sf) is such that 3'[N tO {e} to TI ~-- h~.
We want to show that Y{~ U {e} tO T z ~ h 2. Because of the quantification in
(2), every An(T2) can be derived, therefore every Co(T2) is defeasibly
derived; hence (T2, h2) is activated, i.e., Y{NU{e}UT2~h2 . That is,
(Tt ,h~)>_(T2, h2). []

Lemma 2.25. Let (Zl, hi) and (T2, h2) be such that (TI, hi) >_ { T2, h2). Let

5 As noted by a referee, we do not state the theorem that given (T1, hl)~-(T2, h2) and
(T I, h I) > (T 3, h 3) , also (7"2, h2) >_ (7"3, h3) , but this is immediate from the definitions.

* At press time, this lemma and its proof are found to be in error. A corrigendum is planned by
the authors.

Mathematical treatment of defeasible reasoning 135

(T2, h2) be such that V x ~ Co(T2), YdU Tl~-x. If (T2, h2) contains a sub-
argument structure (R, p), then (T 1, h~) contains a subargument structure
(S, p) such that (S, p) > (R, p).

Proof. The subargument structure (R, p) of (T2, h 2) is formed by the subset
R of T:. Given that every member in Co(T2) can be inferred using the rules in
T~ and Yt, we can distinguish which rules are necessary to prove the subset
Co(R) of Co(T2), calling it S. We contend that (S, p) is the required
subargument. Obviously, for all x in Co(R), Y{ U S ~- x, by its own definition.
Therefore, any literal necessary to infer p from R is available in S. For the
same reason (S, p) _> (R, p) . []

This establishes conditions for discarding arguments which reduces the
search for argument defeaters.

Remark 2.26. Given two arguments (T l ,h l) and (T2, h2) satisfying the
conditions of the above lemma, we will say that (T 1, h 1) covers (T 2, h2).

3. An algebra of arguments

A very good question regarding arguments is about the kind of operations
that it is possible to define on them. We will devote the next few sections to
consider certain operations on ~ ((T , h)) = {(T i, hi)))i~ 1 the family of sub-
arguments of an arbitrary argument structure (T, h) E AStruc, where I is a set
of indices, and explore some of its properties and interrelations. When no
confusion is possible we will use ~ instead of ,~((T, h)).

A set of wffs in a first-order language is consistent if and only if there is no
formula for which that formula and its negation are theorems of the set. Our
defeasible derivation relation is weaker than derivation in first-order logic. It is
possible to defeasibly derive contradictory conclusions from an arbitrary set of
defeasible rules. Because of that characteristic we will introduce a weaker
notion for sets of defeasible rules.

The following discussion omits proofs which can be found in the thesis [17].

Definition 3.1. Given two argument structures (T 1, hi) and (T2, h2) in
AStruc they will be called concordant if Y{ U T~ U T 2 ~- ±.

As could be expected, subarguments of a given argument structure have the
property of being concordant with each other.

Proposition 3.2. Let (T, h) ~ AStruc be an arbitrary argument structure, and
let ~ be the family {(Ti, hi) }iCl of all (T, h) subargument structures, then the
members of ~ are pairwise concordant.

136 G.R. Simari, R.P. Loui

3.1. Argument combination (join)

Definition 3.3. Let { T, h } ~ AStruc be an arbitrary argument structure, and let
be the family of all its subargument structures. Given { T1, h ~) and { T 2, h~)

in ,~, we define the combination of them as the argument structure (T3, h3),
where T 3 = T~ U T 2 and h 3 = h~ /x h 2. The operation will be denoted:

{T3, h3) = (T , , h ,) kl (T 2, h2}.

Proposition 3.4. The combination o f argument structures is a well-defined
operation in ~.

Proposition 3.5. Given two argument structures { T1, hi) and { T 2, h2} E ~, the
combination {T 3 , h 3) = { 7 " 1 , h l) l l { T 2 , h2) is such that {T3, h3)>_{T~,hl}
and (T3, h3)> { 1"2, h2} and (T 3, h3) is the minimal (in >) argument structure
in ~ with that property which contains { T 1 , hl) and { T2, h2) as subarguments.

Proposition 3.6 (Associativity). The combination o f arguments in ~ is associa-
tive, i.e., if (T 1 , h 1), { T 2, h2), and (T3, h3} are subargument structures of
then

({T1, hi} L_] {T2, h2))U {Z3, h3)

= {T1, h ,) L_J((T2, h2} t~ {T3, h3)) .

Proposition 3.7 (Commutativity). The combination o f arguments in ~ is com-
mutative, i.e., if (T 1 , h 1 }, { T2, h2} are subargument structures of ~ then

(T , , h~} L_l (T2, h2} = (T2, h2} LJ (T , , h~},

Definition 3.8. Given a subfamily {(T,/, hi/}}i,~g of {(Ti, h i}}~l , we define the
generalized combination of the subargument structures in it as

LU{(Ti/,hil}}i/EJ=(jUTi,~ Ahi,) •
l ~ J / /CJ

Proposition 3.9. The argument structure (0, YU } (if Y{ ~ is finitely representable)
is an identity element with respect to the combining operation in the family 0% of
subargument structures o f a given argument structure (T, h }.

3.2. Argument intersection (meet)

Given a subset T of A +, we will describe the rules on it as {A i >-- Bi}~e t.
Using that representation we can consider the set { A i } i ~ 1 of antecedents of
rules in T and the set {Bi}iE t of consequents of those rules. If (T, h} is an

Mathematical treatment of defeasible reasoning 137

argument structure for h, then the set (~" t/{B~}~Et) ~ is the set of literals for
which there is a subargument structure contained in (T, h).

Definition 3.10. A set of rules {Ai~--B~}iet is consistent if and only if
{Bi}i~ , ~- J_.

Remark 3.11. For arguments (T, h) , T is consistent because of the nonredun-
dancy and the ~-consistency of arguments.

Let T be an arbitrary, but consistent, subset of A 4. The question is "Is there
a literal in ~ for which we can have an argument structure using T?" The
literal (Y{ tO {B~}i~t) ~ has that property. It also has the property of being the
strongest literal, in the usual sense, with that property.

Definition 3.12. Let (T, h) E AStruc be an arbitrary argument structure, and
let ~ be the family of all its subargument structures. Given (T~, h~) and
(T2, h2) in ~, we define the intersection of them as the argument structure
(Ta, h3), where T3= Tlfq T 2 and h 3 is defined as (Y { U { B i } i e l f , where
{Bi}ic I is the set of consequents of the rules in ~ . The operation will be
denoted:

(T3, h3} = (T1, h ,) [-] (T2, h2) .

Proposition 3.13. The intersection o f argument structures is a well-defined
operation in ~.

Proposition 3.14. Given two argument structures (T I, hi) and (T 2, h2) ~ if',
the intersection (T3, h a) = (T1, h 1) [q { T2, h 2) is such that (T1, h 1) >_ (7"3, h a)
and (T 2, h2) >_ (T3, ha) and (T 3, ha} is the maximal argument structure in
with the property o f being a subargument o f (T 1, hi} and (T 2, hE}.

Proposition 3.15 (Associativity). The intersection o f arguments in ~ is associa-
tive, i.e., i f (T1, hi) , (T2, h2}, and (T 3, h3} are subargument structures in
then

((T1, h~) ~ (T2, h2))7q (T a, h3)

= (T, , h ,) [-I((T z, h2} fq (r 3, h3)) .

Proposition 3.16 (Commutativity). The intersection o f arguments in ~ is com-
mutative, i.e., i f (TI, h I), (T 2, h2) are subargument structures in ~ then

(T~, h~) [-] (T2, h2) = (T2, h2) [q (T~, h~) .

Definition 3.17. Given a subfamily {(Ti/, hi/}}ifi J of {(T i, hi)}~El, we define

138 G,R. Sirnari, R.P. Loui

the generalized intersection of the subargument structures in it as:

[-~{(Tij, h%)}i, c j= l jg j Ti~, (Y{ U (B~}~c,)~),]cJ

where {Bi}ic ~ is the set of consequents in Nj~j Ti.

Proposition 3.18. The family ~ of subargument structures of a given argument
structure (T, h) has an identity element with respect to the intersection oper-
ation. That identity element is the argument structure (T, h).

Corollary 3.19. 7he family ~ with the intersection and combination operations
defined over the argument structures forms a lattice.

4. Justifications

In the previous section we introduced the notion of argument structure and
defined a specificity relationship on the set of all possible argument structures.
The reason to define that relationship is to be able to "select" argument
structures with the characteristic of being "better" than others. In this section
we will define the selection process.

4.1. Basic interactions among argument structures

Arguments are objects that represent "pieces" of the reasoning process.
They relate to each other in different ways. We have already seen an example
in the subargument relation. Another example is the concordance among
argument structures, i.e., the property which would allow to join them without
producing an inconsistency. Going in the opposite direction is the disagreement
relation that will be introduced in the next subsection. Some other interactions
involving specificity are possible. We will introduce them now starting with
those that are simplest to define.

4.1.1. Disagreement
It is possible for two argument structures to support two facts which together

with the context Y{ are inconsistent, We will refer to the relationship between
two argument structures in that situation as disagreement. Next we will present
the formal definition of disagreement.

Definition 4.1. We say that two argument structures T 1 for h~ and T 2 for h 2

Mathematical treatment of defeasible reasoning 139

disagree, denoted by

(T, , h~) ~<~x (T2, hz)

if and only if Y(U (h I, h2} ~- .1_.

The following are examples of this relationship.

Example 4.2.

({E>---TC},-TC)~'<~c ({A ^ B>---C}, C) , : K = { E , A , B } .

Example 4.3.

({E>----7C},--7C)~'<3x'({A>--X},X), :K={E,A , X D C } .

The following is not an example of this relationship, but motivates the next
definition.

Example 4.4.

((E>-- - -TB} , -1B) , ({E>---B,B>---A} ,A) , Y[={E} .

4.1.2. Counterargument
The counterargument relation tells us about the internal construction of an

argument structure with reference to another argument structure. It is a
refinement of the disagreement relation. It looks to the subarguments of a
given argument structure in light of another argument, i.e., indicates the
existence of subarguments of an argument structure which are in disagreement
with the other argument. Formally:

Definition 4.5. We say that an argument structure T 1 for h~ counterargues an
argument structure T z for h z at h, denoted by

(T 1, h~)@ -~h (Te, he)

if and only if there exists a subargument (T , h) of (Tz, he) such that
(T1, hi) ~'<~x (T, h) , i.e., (T, h) C (T 2, h2) and Y/k.J {hi, h} ~- 5_.

Remark 4.6. A fact h in the conditions of Definition 4.5 will be referred to as a
counterargument point.

Example 4.7.

({E >- -7C} , 7C)~---~C ((A A B>-- C, C > - D}, D) ,

where ({E>---~C},--nC) is in disagreement with the subargument ({A A
B>-' -C},C) of ({ A A B > - C , C > - - D } , D) .

140 G.R. Simari, R.P. Loui

4.1.3. Defeat
The defeat relationship is a further refinement of counterargument, where

the specificity relation comes into play. We will say that an argument structure
(T~,h~) defeats another argument structure (T 2, h2) if it is the case that
(T2, h2) contains a subargument structure (T, h) such that (T~, h~) disagrees
with (T, h) , and (T~, h I) is more specific than (T, h). That is:

Definition 4.8. We say that an argument structure T~ for h~ defeats an
argument structure T 2 for h 2, denoted by

(Tl, hl) >> def (T2, h2}

if and only if there exists a subargument structure (T, h) of (T 2, h2} such
that:

(1) (T 1, h~) ~___~h (T2 ' h2), i.e., T 1 for h 1 counterargues T 2 for h 2 at h, and
(2) (T 1, h~) > (T, h) , i.e., T~ for h I is more specific than T for h.

Remark 4.9. A fact h in the conditions of Definition 4.8 will be referred to as a
defeater point.

Example 4.10.

({A ^ B A E >---aC}, ~C} ~>def ({A A B >-- C, C>-- D}, D) ,

that is, the argument structure ({A ^ B ^ E > - - a C } , ~ C } counterargues
({ A A B > - - C , C > - D } , D) at C and ({ A ^ B A E > - - - n C } , a C } is more
specific than ({A A B >-- C}, C) .

4.2. Justifying arguments

A fundamental issue in reasoning is to decide what the agent believes as a
function of a given context and the set of defeasible rules forming his explicit
knowledge. But how can he decide if a tentative conclusion is part of the
implicit knowledge? Or how can he decide if that tentative conclusion is
consistent with the implicit knowledge? According to our scheme this decision
must be taken by analyzing what kind of support the tentative conclusion has.
This can be accomplished by seeing which arguments are relevant to the
conclusion.

Given a fact h, there may be several argument structures in the set
AStrue(A ~) of argument structures formed with members of A ~, which support
h from the context K. Those argument structures relate to others in
AStruc(A ~) by the defeat and counterargument relations. For an argument
structure (T, h) in AStrue(a ~), we may have a set I of argument structures
which interfere with (T, h) , i.e., they counterargue (T, h). In I, the set of
interfering arguments, there may be some arguments which defeat (T, h).

Mathematical treatment of defeasible reasoning 141

Those defeaters could in turn be defeated. If all the defeaters are defeated, the
original argument structure (T, h) becomes reinstated. The above discussion
leads to an inductive definition, which is similar to Pollock's [12] and character-
izes that process.

Definition 4.11. Arguments are active at various levels as supporting or
interfering arguments.

(1) All arguments are (level-0) S-arguments (supporting arguments) and
I-arguments (interfering arguments).

(2) An argument (T1, hi) is a (level-(n + 1)) S-argument if and only if
there is no level-n I-argument (T2, h 2) such that for some h, (/'2, h 2)
counterargues (T1, hi) at h, i.e., ji/(T2, h2) EAStrue such that, for
some h, (T2, h2)~-->h (Tl ,h~) .

(3) An argument (T1, h I) is a (level-(n + 1)) I-argument if and only if there
is no level-n I-argument (/'2, h2) such that (Te, hz) defeats (T1, hi) .

Remark 4.12. A level-n S-argument will be denoted by Sn-argument and a
level-n I-argument will be denoted by In-argument. Also notice that we
dropped the parentheses.

Definition 4.13, We say that an argument (T, h) in AStruc justifies h if and
only if there exists m such that, for all n ~> m, (T, h) is an Sn-argument for h.
We say that h is justified in 12 C AStruc if there is a (T, h) E I2 that justifies h.

Lenuna 4.14. Let (T, h) be an argument structure in AStrue, such that (T, h)
justifies h. Then every subargument (R, q) of (T, h) justifies its conclusion q.

Proof. The proof comes from the fact that any possible defeater of (R, q) will
also be a defeater for (T, h) . And since (T, h) justifies h, no effective
defeater exists. []

We say that h is provisionally justified at level n iff there exists an S n-
argument which supports it. A set of provisionally justified facts is called stable
iff every member of it is justified.

It is possible to define a sequence {Xn} of operators over AStruc in
correspondence with Definition 4.11 in the following way. For a given k, let
2~ k(AStruc) be the set of h such that there exists (T, h) that is in AStrue and is
an Sk-argument; i.e., ,vk produces the set of partially justified facts at level k.
This definition allows us to talk about the set of justified facts in operational
terms, as in the following lemmas.

Lemma 4.15. I f Z"(AStruc) = ~"+l(AStrue), then Z"(AStruc) is stable.

142 G.R. Simari, R.P. Loui

Proof. The proof of this lemma is obvious from the definition of stable set.
Once ~" has "repeated" itself, i.e., ~ ~(AStruc) = ~" +l(AStruc), that means that
no new interfering argument has been reinstated. Therefore, no I"-argument
can get defeated at level n + 1 and no S"-argument can get counterargued. []

Now the open question is whether that situation is ever reached. The next
theorem will answer that question.

Theorem 4.16. For any defeasible logic structure (Y{, A) with finite Astruc, there
is a unique stable set, and the operator ~ will find it.

Proof (Sketch). The set ASt ruc /~ , as we have shown previously is partially
ordered by "_~". Consider the set ~ (ASt ruc /~) of all the subsets of AStruc /~ .
Some of their members are totally ordered sets, i.e., chains. These chains are
formed by equivalence classes which contain equi-specific arguments. But even
though two arguments are equi-specific they may support different facts.
Nevertheless, from one of the chains in ~(ASt ruc /~) we can extract chains of
arguments which support the same fact. Being finite, from those chains it is
possible to extract the most specific argument for every fact. We collect all the
most specific arguments in a set that for reference convenience we will call
9-(AStruc). Notice here that we may have in 3-(AStruc) more of one argument
for a fact, but if that case occurs the argument structures are unrelated by ">_".

We apply the justification procedure of Definition 4.13 to J-(AStruc), and
this is equivalent to applying it to AStruc, as is clear from the following
discussion. It is obvious that we have lost no interesting argument by restricting
ourselves to 3-(AStruc). For every argument structure in AStruc, there is an
argument structure in g/-(AStruc) which is at least as specific as the one in
AStruc. So in looking for counterarguments of an argument structure we will
obtain the same counterargument points. The same is true for defeaters, with
the difference that now we only have to look at the more specific argument
structures possible for a defeater point.

Now, given one of these arguments in J-(AStruc), (T, h) , we consider the
set Counter((T, h)) of counterarguments of (T, h) in ~-(AStruc). Obviously
the set can be empty. The set Counter((T, h)) contains only the more specific
counterarguments for every possible counterargument point of (T, h) . For
every member (R, q) in Counter((T, h)) there is a set of possible defeaters
Defeaters((R, q)) which contains only defeater arguments which are more
specific than (R, q) ; again the set can be empty. Defeaters ((R, q)) contains
only the more specific defeaters (S, r) for every possible defeater point of
(R, q) . This construction can be performed until we get a " t ree" where the
nodes of the tree are connected by the "counterargument" relation, the root to
its children, or the "defeat" relation between the rest of the levels. This tree
contains the whole dialectical structure for the argument being considered.

Mathematical treatment of defeasible reasoning 143

We define an argument line as the walk that it is possible to construct from
one of the leaf nodes of the tree to the first node before the root, i.e., the last
node in an argument line is a counterargument. We can apply the second
operation defined in the justification procedure to the set of argument lines
obtained from the tree. If an argument line "survives" the test the argument is
defeated.

These argument lines are sequences ((T l, h 1), (T2, h2), . . . , (T,, h~))
where (T l , h l) is the counterargument. The sequence is ordered by the
specificity relation, i.e., (Tn, hn) > - . . > (T 2, h2) > (T1, hi) . If n is odd, the
counterargument survives; if n is even, the counterargument is defeated as is
easy to see. []

Definition 4.17. We will refer to the stable set defined by Theorem 4.16 as ,~=.

5. Discarding arguments

In this section we will show some relationships among arguments and
justifications aiming to find avenues pointing to efficient implementations. In
that direction, it is importa'~t to find properties that will characterize arguments
that can be discarded in order to reduce the size of the search space. Again,
proofs are omitted.

We prove propositions essential to proving the claim that covered arguments
can be discarded. This is a weak pruning method, and serious investigation of
pruning will have to look at stronger claims. But our interest here is how the
formalism allows provable claims.

Lemma 5.1. Given two argument structures (TI , h 1) and (T 2, h2) in AStruc
such that (T 1, h i) >_ (T2, h2) and Yd U {hi} ~ { h2}, then (T 1, h2) is an argu-
ment structure. That is, T 1 is an argument for h 2, and (T~, h2) >_ (T 2, h2), i.e.
T 1 for h 2 is more specific than T z for h 2.

Lemma 5.2. Given two argument structures (T 1, h i) and (Tz, h2) such that
(T l , h l) > _ (T 2 , h2) and ~t.J{h~}~-{h2}, i f h 2 is justified in 12U
{ (T~ ,h~) , (T2, h2) } then h 2 is justified in 1 2 U { (T l , h l)) , where 12 is any
subset o f AStrue.

Lemma 5.3. Given two argument structures (T i, hi) and (T 2, h2) such that
(Tl, hl) covers (T2, h2), i.e., (Tl, hl) >_ (T2, h2) and Yf t3 Tl ~ x, for all x
in Co(T2), then if p is justified in 12 U {(T 1 , h i) , (T 2, h2) }, p is also justified in
12 t_l { (T1, h 1) }, where 12 is any subset o f AStruc.

Proposition 5.4. Given (T 1, h I), (T 2, h2), and (T, h) in AStruc, where

144 G.R. Simari, R.P, Loui

(T,, h,) covers (T 2, h2), then if (T 2, h2) contains a subargument structure
(R, p) such that (n , p)@-~P (r , h), then (T l, h,) contains a subargument
structure (S, p) such that (S, p) ~---~ P (r, h) .

This allows covered arguments to be discarded while keeping the arguments
that cover them, with no loss in ability to counterargue.

Proposition 5.5. Given (T 1, h~), (T 2, h2), and (T, h) in AStruc such that
(T~,h~) covers (T2, h2), then if (T2, h2)>>def(T,h) then (Tl ,hl) '>de f
(T , h) .

This allows covered arguments to be discarded while keeping the arguments
that cover them, with no loss in ability to defeat.

Given 12 C AStruc and (T l , h ~), (T 2 , h 2), (T, h) E AStruc, where (T1, h ~)
covers (T2, h :) , define

~'~big ~--" ~'~ ~'j {(T, h), (T~, hi) , (T 2, h 2) } ,

~'~small = ~'~ U {(T, h) , (T1, h~)} .

Proposition 5.6. I f (T, h) is an S"-argument in •big, then (T, h) is an
S~-argument in Os~au.

This is the inductive step toward completing the argument that covered
arguments can be discarded if at least one of their covers is retained. The
supporting arguments are not disrupted by discarding a covered argument.

6. Some interesting examples

We will show some examples presented in the literature of defeasible
reasoning to show the behavior of the system.

Example 6.1 (Opus does notfly). An example of how information regarding a
subclass overrides more general information corresponding to superclasses.

Birds tend to fly

Penguins tend to not fly

All penguins are birds

Opus is a Penguin

Does Opus fly?

(B(x) >-- F(x)) ,

(P(x) >-- 7 F (x)) ,

(P(*) ~ B(x)) ,

(P(opus)) ,

(F (o p u s) ?) .

The context and defeasible rule set are

= {P(opus), P(opus) D B(opus)},

Mathematical treatment of defeasible reasoning 145

Hies(Opus) -Hies(Opus)

Bird(Opus) Penguin(Opus)

Penguin(Opus) ~- Bird(Opus)

Fig. 1. Example 6.1.

z = (B(opus) > - p(opus), P(opus) > - F(opus)}

respectively (see Fig. 1). Two argument structures are interesting:

(TI, F(opus)) = ({B(opus) >-- F(opus)}, F(opus)>,

(T 2, mF(opus) > = ({ P(opus) >-- 7F(opus)} , -TF(opus)) .

We have the following disagreement

(T1, F(opus)) D<~ x (T2, 7 F(opus)>.

Moreover

(7"2, -7F(opus)) ~_.~F(opus) (T,, V(opus)>.

But

(T2, -7 F(opus)) > (T1, F(opus)>.

Therefore,

(T2, "-7F(opus)> >>de, (T1, F(opus)>,

hence (Tz, -7F(opus) > justifies -7F(opus).

Example 6.2 (Nixon Diamond). This canonical example is devised to show how
the reasoner behaves in ambiguous situations and is due to Reiter [15].

Quakers tend to be pacifist

Republicans tend to be non-pacifist

Nixon is a quaker

Nixon is a republican

Is Nixon pacifist?

(Q(x) >-- P(x)),

(R(x) >-- -1P(x)),
(Q(nix)) ,
(R(nix)) ,
(P(nix)?) .

Clearly, there are three possible behaviors. The first, which is clearly undesir-
able, will give one of the two possibilities arbitrarily. The second, which is the

146 G.R. Simari, R.P. Loui

Pacifist(Nixon) -Pacifist(Nixon)

Quaker(Nixon) Republican(Nixon)

Fig. 2. Example 6.2.

behavior of reasoners using the inferential distance ordering instead of length
of the path [20], will give two answers, leaving the decision to whomever uses
the system. This kind of reasoner is called credulous because it gives good
standing to all the possible conclusions. The last, the so-called skeptical
reasoner, does not decide about ambiguity [5] by not giving any answer. Our
reasoner is skeptical.

The context and defeasible rule set are

~{ = {R(nix), Q(nix)} ,

A = {Q(nix) > - P(nix), R(nix) >- --aP(nix)}

respectively (see Fig. 2). We have two argument structures, one for P(nix) and
one for 7P(n ix) , namely,

(T,, P(nix)> = ({Q(nix) >-- P(nix)}, P(nix)) ,

< T2,-TP(nix)) = ({R(nix)) >--- -TP(nix)}, ~ P (n i x)) .

None of those argument structures defeats the other; they interfere and they
are not ordered by specificity.

Example 6.3 (Cascaded Ambiguities). This example is an extension of the
Nixon Diamond constructed to show how simple-minded skeptical reasoners
can be fooled to believe in the militarism (non-anti-militarism) of Nixon [5].

Quakers tend to be pacifist

Republicans tend to be non-pacifist

Pacifists tend to be anti-military

Republicans tend to be football fans

Football fans tend to be non-anti-military

Nixon is a quaker

Nixon is a republican

Is Nixon anti-military?

The context and defeasible rule set are

(Q (x) >-- P (x)) ,

(R(x) > - -~ P(x)) ,

(P(x) ~ - A (x)) ,

(R (x) >-- F(x)) ,

(F(x) >-- ~A(x)),
(Q(n ix)) ,

(R(nix)) ,

(A (n i x) ?) .

Mathematical treatment of defeasible reasoning 147

Y{ = { R(nix), Q(nix) } ,

A = {Q(nix) >- P(nix), R(nix) >- 7P(nix), P(nix) >- A(nix) ,
R(nix) >- F(nix), F(nix) >- 7A(nix) } .

respectively (see Fig. 3). We have two argument structures, one for A(nix) and
one for ~A(nix) , namely,

(T,, A(nix)) = ({ Q(nix)>-- P(nix), P(nix)>- A(nix)}, A(nix)) ,

(T2, -TA(nix)) = ({R(nix) >- F(nix),
F(nix) >- 7A(nix)} , 7A(nix)) .

Neither of those argument structures defeats the other and our reasoner
remains skeptical.

Notice that some skeptical reasoners will consider the "path" (using inheri-
tance reasoners terminology), { Q(nix) >-- P(nix), P(nix) >- A(nix) } as being
preempted by {R(nix) >- ~P(nix)} and hence leaving {R(nix) >- F(nix),
F(nix) >---TA(nix)} free to support the conclusion about Nixon being non-
anti-military. That situation does not arise in our case. The argument structure
({R(nix) >-- ~P(nix)}, 7P(nix)> counterargues (T 1, A(nix)) at P(nix), but
({R(n i x)>-TP(n i x) } ,TP(n i x)) is not more specific than (T , ,A (n ix)) .
Therefore, ({ R(nix) >-- 7P(nix)}, 7P(nix) > does not defeat (TI, A(nix) >.

Anti-Military(Nixon)

Pacifist(Nixon) -Pacifist(Nixon)

Ouaker(Nixon)

-Anti-Military(Nixon)

FootballFan(Nixon)

Republican(Nixon) Republican(Nixon)

Level T l Tz T3

1 IS IS IS
2 I I 1
3 I I 1

Fig. 3. Example 6.3 (S = Supporting, I = Interfering).

148 G.R. Simari, R.P. Loui

Gray(Clyde) -Gray(Clyde)

Elephant(Clyde) RoyalElephant(Clyde)

RoyalElephant(Clyde) ~- Elephant(Clyde)

Fig. 4. Example 6.4.

Example 6.4 (Royal African Elephants). This example deals with "on-path
versus off-path preemption" and is due to Sandewall [16], in the context of
inheritance reasoners.

Elephants tend to be gray

Royal elephants tend to be non-gray

Royal elephants are elephants

African elephants are elephants

Clyde is a Royal elephant

Clyde is an African elephant

Is Clyde non-gray?

The context and defeasible rules are

(E(x) >- C(x)),
(R(x) > - -7 G(x)) ,

(R(x) ~ E(x)),
(A (x) D E(x)),
(R (c l y d e)) ,

(A (c l y d e)) ,

(- -qG(c l yde)) .

~{ = { R(clyde), A(clyde), R(clyde) ~ E(clyde), A(clyde) D E(clyde) } ,

a = { E(clyde) >-- G(clyde), R(clyde) >-- --7 G(clyde)}

respectively (see Fig. 4). We have three argument structures, two for G(clyde)
and one for -7 G(clyde), namely,

(Zl, G(clyde)) = ({ E(clyde) >-- G(clyde)}, G(clyde)) ,

(T2, G(clyde)) = ({ E(clyde) >-- G(clyde) }, G(clyde)) ,

(T 3, --7 G(clyde)) = ({ R(clyde) >-- "-7 G(clyde)), --1 G(clyde)) .

Clearly, the more specific argument structure is (T3,---1G(clyde)), matching
our intuitions.

Example 6.5 (Adul t University Students). This example deals with "defeasible
specificity", which our system does not have, and is due to Geffner [2]. Geffner
will draw a conclusion here, while we will not.

Adults tend to work (A(x) >-- W(x)) ,

University students tend not to work (U(x) >-- ~ W (x)) ,

Mathematical treatment of defeasible reasoning 149

Works(K) -Works(K)

T T
Adult(K) UniversityStudent(K)

UniversityStudent(x) >-- Adult(x), but not UniversityStudent(K) }- Adult(K).

Fig. 5. Example 6.5.

University students tend to be adults

Ken is a university student

Ken is an adult

Does Ken not work?

(U(x) > - A (x)) ,

(U (K)) ,

(A (K)) ,

(T W (K)) .

The arguments are depicted in Fig. 5. Although U(x) >- A(x), this cannot be a
part of either argument (first because it makes each argument nonminimal, and
moreover , because it causes inconsistency in the second argument) , so there is
no specificity. Had the evidential context been only that Ken is a university
student, from which A(K) is derived, then the second argument would have
been more specific.

Example 6.6 (Prima Facie Inconsistency of Rules). This example deals with
rules that are not "epsi lon-sound" in the sense of Geffner and Pearl [2]. Their
system cannot entertain such rules, while ours simply draws no conclusion.

(P > - Q) , (P>--TR) , (Q > - R) ,

(P) , (R or ~ R) ? .

The arguments are depicted in Fig. 6. P activates the first argument, as does

R

/]
7

~R

Fig. 6. Example 6.6. P activates T1, as does P ^ Q. Each suffices for T 2. Meanwhile P activates T2,
which suffices for T1. Neither is more specific.

1511 G.R. Sirnari, R.P. Loui

P A Q. Each suffices for the second argument. Meanwhile, P activates the
second argument, which suffices for activating the first argument. Neither is
more specific; no conclusion is justified.

Example 6.7 (Yale Shootings). This example deals with the Yale Shooting
example and its extension by Hanks and McDermott [4] (see Fig. 7). They note
that Poole's original system can choose the second argument over the first
argument, but complain that it cannot block the first argument once extended.
Blocking the extended argument, as desired, is trivial in this system. This was
also true of the system in [7]. Moreover, the present system permits the second
argument to defeat the first even when the final rule is replaced by a material
conditional.

Aliveness tends to persist

Loadedness tends to persist

Firing a loaded gun coerces a
change in Aliveness

Fred is Alive

The gun is loaded

The gun is fired

Does Fred die?

/ / \
Alive@3 Raining@3

Alive@2

Alive@l

T
Alive@0

(Alive@t >-- Alive@t + 1),

(Loaded@t >- -1Loaded@t + 1),

(Alive@t A Fired@t A Loaded@t >--
~Alive@t + 1),

(Alive@O),

(Loaded@l),

(Fired@2),

(7 Alive@3) .

-Alive@3

Alive@2 Loaded@2

Alive@l Loaded@ 1

t
Alive@0

Fig. 7. T 2 defeats T1, and it will defeat the proposed extension of TI. The top rule in T2,
Loaded@2 A Fired@2 A Alive@2>--~Alive@3 could be replaced by a material conditional,

Loaded@2 A Fired@2 ^ Alive@2---~--Alive@3 and there would still be defeat.

Mathematical treatment of defeasible reasoning 151

Clearly the theory

T 1, Alive@3> = < {Alive@O >-- Alive@l, Alive@l >-- Alive@2,
Alive@2 >-- Alive@3}, Alive@3>

is defeated by the theory

(T 2, -1 Alive@3> = < {Alive@O >-- Alive@l, Alive@l >-- Alive@2,
Alive@2 >-- Alive@3,
Loaded@l >-- Loaded@2, Loaded@2 >-- Loaded@3,
Alive@2 A Fired@2 A Loaded@2 >-- -qAlive@3},
~Alive@3> .

In fact, if the material conditional

Alive@t A Fired@t A Loaded@t D 7Al ive@t + 1

is included in the necessary part of the evidence, then the theory

(T2b, ~Alive@3) = < { Alive@O >-- Alive@l, Alive@l >-- Alive@2,
Alive@2 >-- Alive@3,
Loaded@l >-- Loaded@2, Loaded@2 >-- Loaded@3},
--q Alive@3 >

defeats the first theory. Extending the first theory with the rule

Alive@3 A Raining@3 >-- Wet@4,

and the evidence Raining@3 just produces a theory that is defeated by the
counterargument T 2 (or T2b).

7. A justification finder

Implementations of defeasible reasoners are rarely seen beasts. An early
attempt to introduce defeasible reasoning programming with specificity was
Nute's d-Prolog [10, 11]. The language of d-Prolog provides facilities to define
absolute rules, "every bat is a mammal", defeasible, rules, "birds fly", and
defeater rules, "sick birds do not fly". The purpose of defeater rules was to
account for the exceptions to defeasible rules. For instance, given the defeas-
ible rule "birds fly", the defeater rule "sick birds do not fly" will stop us from
concluding that "Tweety flies", in the presence of the fact "Tweety is a sick
bird".

7.1. The language implemented

The basic ideas of logic programming are introduced here using the standard
notation for them. We will slightly modify that notation as we introduce our
language.

152 G.R. Simari, R.P. Loui

Definition 7.1. A definite clause is a clause of the form:

B (U - - - A 1 An

with only one atom as the consequent. The consequent B is called the head and
the antecedent A I , A,, is called the body of the definite clause.

It is customary to regard all clauses as implications, even though they have
no head or body. We will alter this for our language in a way that is consistent
with this presentation. The reasons for that modification will be given below.

Definition 7.2. A definite goal is a clause of the form:

(---- A 1 A, , ,

i .e., a definite clause with an empty consequent. The A i are sometimes called
subgoals of the goal.

A unit clause is a clause of the form:

B (,

i .e., a definite clause with an empty body. We will alter this representation
introducing the special atom true. Our unit clauses will be written:

B ~ true.

Unit clauses are also called facts.

Definition 7.3. A Horn clause is a clause which is either a definite clause or a
definite goal.

We have extended the representation in two ways. First, we added defeasible
clauses, and second, we introduced a relation neg used to represent negative
facts.

Definition 7.4. A defeasible clause is a clause of the form:

B - < A 1 , A n

with only one atom as the consequent. The consequent B is called the head of
the defeasible rule and the antecedent A 1 , . . . , A n is called the body of the
defeasible clause.

The neg relation will allow the representation of negative facts in the system.
Negation is handled in the same way as proposed by Nute [10, 11]. This
relation is not related in any way to negation as failure and its only meaning is
to refer to a negative fact. Negative facts relate to positive facts in the usual
way. The system will treat the relation neg as a prefix forming part of the

Mathematical treatment of defeasible reasoning 153

"name" of the atom and not as an operator. The system will recognize that
neg neg A = A. That is, the goal neg A will be assumed as a consequence of a
set R of definite and defeasible clauses if and only if neg A is deducible from R
via a finite number of applications of modus ponens. The goal neg neg A will
be assumed as a consequence of a set R of definite and defeasible clauses if and
only if neg neg A, or A, is deducible from R via a finite number of applications
of modus ponens. Thus, the relation neg does not have any special status; the
system will treat the atom neg A in the same way as any other atom C.

Our neg operator can appear in the head of the rules, defeasible and
otherwise. For instance,

neg A , ' . . true,

neg A .¢Z----- neg B, C ,

neg A --< B, C, neg D ,

are legal rules. Notice that the first rule is asserting a negative fact.

Definition 7.5. A knowledge base K is a finite set of definite clauses and
defeasible clauses, possibly containing atoms affected by the neg relation. A
knowledge base is the equivalent of what previously was called a defeasible
logic structure. In a knowledge base ~ the set Y(will be represented using
definite clauses, and the set A will be represented using defeasible clauses.

7.2. Finding justifications

The interpreter will work following the lines of the proof of Theorem 4.16
taking advantage of the inference mechanism of Prolog.

The input to j f is a knowledge base ~, and a ground query Q. The contents
of the knowledge base were described in Section 7.1. A ground query Q is a
ground instance of an atom, possibly affected with the prefix neg. The justifier
is invoked by issuing the command:

analyze(Q),

which will start the process of testing whether there is an undefeated argument
which supports Q from the contents of K.

If the search finds a justification the output of the system for such a query
will be one of the argument structures that are justifying Q, and all the possible
defeaters that were considered. All the justifiers can be obtained by rejecting
the answer, and forcing the system to keep searching.

If the answer is negative, the system will have two possible answers. The
query Q has no supporting argument. Or even though arguments can be
constructed to support it, all of them were defeated. In the latter case, the
system will return all the potential justifiers, already defeated, with its associ-

154 G.R. Sirnari, R.P. Loui

ated defeaters. We will disregard the uninteresting case when Q has no
supporting argument.

The process begins by attempting to construct an argument for the given
query Q. Arguments for Q are constructed by using backward chaining over
the knowledge base. We will follow Shapiro's [19] terminology. A ground
reduction of a goal G in a knowledge base ~ is the replacement of G by the
body of a ground instance of a clause (definite or defeasible), whose head is
identical to G. A defeasible inference tree consists of nodes and edges which
represent the goals reduced during the construction. The root of the tree is the
original query and the nodes are the goals reduced during the backward
chaining. Edges represent the relation between the head of the rule used in the
reduction and the atoms in the body of that rule. The backward chaining on a
node G stops whenever G is supported by a unit clause, i.e., a clause like
G 4, true. The following example will help to describe the process:

Example 7.6. Assume the following knowledge base ~:

flies(x) --< bird(x)
neg flies(x) -< penguin(x)
bird(x) ~ penguin(x)
penguin(opus) ,g-g---true

(usually, birds fly)

usually, penguins do not fly)

(penguins are birds)

(opus is a penguin)

After the query "analyze(flies(opus))", the system will form the argument

{flies(opus) --< bird(opus),

bird(opus) ~ penguin(opus), penguin(opus) ~ true)

by backward chaining from flies(opus).

The system will always form the most specific argument. If the system is
forced to backtrack from a unit clause G ~ true, it will not attempt to find
support for G in other clauses. Following those clauses will only produce a less
specific argument. This observation was already suggested in the proof of
Theorem 4.16.

After forming an argument, the system will try to find counterarguments for
the recently formed argument by backward chaining from the negation of
atoms in the original argument. Actually, the system will form a set with the
atoms in the argument, and will add to that set any atom that is derivable from
those atoms and the definite clauses in ~. For instance, in the example above,
it will find the counterargument

{ neg flies(opus) --< penguin(opus), penguin(opus) ~ true} .

Finally, the system will test the argument and the counterargument for

Mathematical treatment of defeasible reasoning 155

specificity using models of argument activation (see Simari [18]) and models of
the counterargument. In short, M is an activation model for (T, h) if M is a
model of 3'f N and M is also a model for some e E Sentc(Sf) and for the rules
that form the subset T' of T such that Y{~ U {e} U T' ~ h. Using those criteria
in our example, we will find that any activation model for the argument for
neg flies(opus) is an activation model for the argument for flies(opus). But
there is an activation model for flies(opus) which is not an activation model for
neg flies(opus), namely the one where bird(opus) is true but penguin(opus) is
not.

If the argument is defeated, as is the case in the example, the system will
backtrack in the process that formed the original argument, discarding the last
rule added to the tree, trying to replace it with another. If it finds one, the
process of finding and testing defeaters is repeated. Otherwise, further back-
tracking is necessary. This process will continue until an undefeated argument
is produced or all the backtracking possibilities are exhausted.

8. Conclusions

In this paper we have presented a mathematical approach to defeasible
reasoning. This approach is based on the notion of specificity introduced by
Poole and the general theory of warrant as presented by Pollock. Poole's
approach to specificity was correct but he stopped short of presenting a
complete approach to it. We proved that an order relation can be introduced
among equivalence classes under the equi-specificity relation. Poole did not
pursue operational aspects of applying specificity. We did that here.

Pollock has suggested an operational framework for performing reasoning,
but he dismissed useful and prevalent generalizations of specificity. Taking his
definition of warrant, we have applied it and transformed it into a justification
schema which defines the set of justified facts from a given defeasible logic
structure. One result of this paper is a theorem that ensures the termination of
the process of finding the justified facts. The proof of that result is based on the
order relation mentioned above.

In order to implement the theoretical ideas, a suitable restriction of the
language has been defined. The language used to represent the context Yg has
been restricted to a subset of first-order logic, Horn clauses, and the language
used to represent defeasible rules in a has been restricted in a similar way, to a
Horn-clause-like syntax. The interpreter was written in Prolog, and running on
top of it provides a defeasible reasoning tool for Prolog.

The implementation of the system has taken advantage of the theoretical
findings. The general mechanism used in the implementation to find justifica-
tions is based on the structures built in proof of the theorem on termination.
The process used to compare two argument structures for specificity is based

156 G.R. Simari, R.P. Loui

on semantical work that is not reported here. 6 Two more lemmas (Lemmas
2.24 and 2.25) define a reduced search space. Meanwhile, it is the prospect of
implementation that suggested many of these theorems.

In comparison with inheritance, this system generalizes the idea of path,
clarifies the logic of reinstatement, and even in its Horn clause form, provides
more expressive language. In comparison with [7], this system shares the same
spirit and many of its syntactic considerations, though reproduces almost none
of the details. In particular, 5~{, A, and > - are taken from [7], which in turn
originates with Kyburg [6]. Further, [7]'s definition of arguments as digraphs
confuses definitional and implementational issues, which this paper separates.
In comparison with Geffner, this approach represents an alternative, older
paradigm, based on arguments instead of irrelevance.

To summarize, the introduction of defeasible logic structures as a way of
performing defeasible reasoning represents the unification of ideas in a formal
and concise system which exhibits a correct, and uniform, behavior when
applied to the benchmark examples in the literature. The investigation of the
theoretical issues has aided the study of how this kind of reasoner can be
realized on a computer, leading to an efficient implementation. We believe that
the presentation here may have more permanence than past approaches to
defeasible argument.

Acknowledgement

This research has been conducted within the Washington University Center
for Intelligent Computer Systems, an industrial consortium supported by
McDonnell Douglas Corporation and Southwestern Bell Corporation. Final
preparation supported by National Science Foundation R-9008012. Karl Stief-
vater found many flaws, some of which have been fixed.

References

[1] J.P. Delgrande, An approach to default reasoning based on a first-order conditional logic, in:
Proceedings AAA1-81, Seattle, WA (1987).

[2] H.A. Geffner and J. Pearl, A framework for reasoning with defaults, Tech. Report TR-941II
CSD-870058, Cognitive Systems Lab., University of California, Los Angeles, CA (1989); also
in: H.E. Kyburg, R.P. Loui and G. Carlson, eds., Knowledge Representation and Defeasible
Reasoning (Kluwer Academic Publishers, London, 1990) 245-265.

[3] C. Glymour and R.H. Thomason, Default reasoning and the logic of theory perturbation, in:
Proceedings Nonmonotonic Reasoning Workshop, Menlo Park, CA (1984) 93-102.

[4] S. Hanks and D. McDermott, Nonmonotonic logic and temporal projection, Artif. lntell. 33
(3) (1987) 379-412.

6 Available in the dissertation [17].

Mathematical treatment of defeasible reasoning 157

[5] J.F. Horty, R.H. Thomason and D.S. Touretzky, A skeptical theory of inheritance in
nonmonotonic semantic networks, Tech. Report CMU-CS-87-175, Computer Science Depart-
ment, Carnegie Mellon University, Pittsburgh, PA (1987); also: Artif. lntell. 42 (1990)
311-348.

[6] H.E. Kyburg, Logical Foundations of Statistical Inference (Reidel, Dordrecht, Netherlands,
1974).

[71 R.P. Loui, Defeat among arguments: a system of defeasible inference, Comput. lntell. 3 (3)
(1987) 100-106.

[8] E. Neufeld, D. Poole and R. Aleliunas, Probabilistic semantics and defaults, in: R.D.
Schachter, T.S. Levitt, L.N. Kanal and J.F. Lemmer, eds., Uncertainty in AI 4 (North-
Holland, Amsterdam, 1990) 121-131.

[9] D. Nute, A non-monotonic logic based on conditional logic, Tech. Report ACMC 01-0007,
University of Georgia, Athens, GA (1985).

[10] D. Nute, Defeasible reasoning, in: J.H. Fetzer, ed., Aspects of Artificial Intelligence (Kluwer
Academic Publishers, Norwell, MA, 1988) 251-288.

[11] D. Nute and M. Lewis, d-Prolog: a users manual, Tech. Report ACMC 01-0017, University of
Georgia, Athens, GA (1986).

[12] J.L. Pollock, Defeasible reasoning, Cogn. Sci. 11 (1987) 481-518.
[13] D. Poole, A logical framework for default reasoning, Artif. InteU. 36 (1) (1988) 27-47.
[14] D. Poole, On the comparison of theories: preferring the most specific explanation, in:

Proceedings IJCAI-85, Los Angeles, CA (1985) 144-147.
[15] R. Reiter, A logic for default reasoning, Artif. InteU. 13 (1980) 81-132.
[16] E. Sandewall, Non-monotonic inference rules for multiple inheritance with exceptions,

Proceedings IEEE 74 (1986) 481-518.
[17] G.R. Simari, A mathematical treatment of defeasible reasoning and its implementation,

Ph.D. Thesis, Department of Computer Science, Washington University, St. Louis, MO
(1989).

[18] G.R. Simari, On the logic of defeasible reasoning, Tech. Report WUCS-89-12, Department
of Computer Science, Washington University, St. Louis, MO (1989).

[19] L. Sterling and E. Shapiro, The Art of Prolog (MIT Press, Cambridge, MA, 1986).
[20] D.S. Touretzky, The Mathematics of Inheritance Systems (Morgan Kaufmann, Los Altos, CA,

1986).

