
Pruning Search Space in Defeasible Argumentation

Carlos Iván Chesñevar Guillermo Ricardo Simari Alejandro Javier Garćıa

Universidad Nacional del Sur, Av. Alem 1253, (8000) Baha Blanca, ARGENTINA
Email: {cic,grs,ajg}@cs.uns.edu.ar

Abstract. Defeasible argumentation has experienced a considerable growth in AI in the last decade. The-
oretical results have been combined with development of practical applications in AI & Law, Case-Based
Reasoning and various knowledge-based systems. However, the dialectical process associated with inference is
computationally expensive. This paper focuses on speeding up this inference process by pruning the involved
search space. Our approach is twofold. On one hand, we identify distinguished literals for computing defeat.
On the other hand, we restrict ourselves to a subset of all possible conflicting arguments by introducing
dialectical constraints. This approach can be adapted to many existing argumentation systems.

1 Preliminaries

Argumentation systems (AS) have emerged during the last decade as a promising formalization of defeasible
reasoning [SL92,PV99,KT99]. Starting from the non-monotonic reasoning community, AS evolved and matured
within several areas of Computer Science such as AI & Law, knowledge representation, default reasoning and
logic programming.

The inference process in AS is computationally expensive when compared with alternative frameworks for
modeling commonsense reasoning, such as traditional rule-based systems. This paper discusses theoretical con-
siderations that lead to obtain efficient implementations of AS. As a basis for our analysis we use defeasible logic
programming [Gar97,GSC98]. The paper is structured as follows: section 2 introduces defeasible logic program-
ming. Section 3 presents the main contributions of the paper. Finally, section 4 concludes.

2 Defeasible Logic Programming: fundamentals

Defeasible Logic Programming (DeLP) is a logic programming formalism which relies upon defeasible argumen-
tation for solving queries. The DeLP language [SL92,Gar97,GSC98] is defined in terms of two disjoint sets of
rules: strict rules for representing strict (sound) knowledge, and defeasible rules for representing tentative infor-
mation. Rules will be defined using literals. A literal L is an atom p or a negated atom ∼p, where the symbol
“∼” represents strong negation.

Definition 2.1 (Strict and Defeasible Rules). A strict rule (defeasible rule) is an ordered pair, conveniently
denoted by Head ← Body (Head —< Body), whose first member, Head, is a literal, and whose second member,
Body, is a finite set of literals. A strict rule (defeasible rule) with the head L0 and body {L1, . . . , Ln} can also be
written as L0 ← L1, . . . , Ln (L0 —< L1, . . . , Ln). If the body is empty, it is written L ← true (L —< true), and
it is called a fact (presumption). Facts may also be written as L.

Definition 2.2 (Defeasible Logic Program P). A defeasible logic program (dlp) is a finite set of strict and
defeasible rules. If P is a dlp, we will distinguish in P the subset Π of strict rules, and the subset ∆ of defeasible
rules. When required, we will denote P as (Π, ∆).

Example 2.3. Consider an intelligent agent which has to control an engine whose performance is determined by
three switches sw1, sw2 and sw3.1 The switches regulate different features of the engine’s behavior, such as
pumping system and working speed. We can model the engine behavior using a dlp program (Π, ∆), where Π =
{(sw1 ←), (sw2 ←), (sw3 ←), (heat ←), (∼fuel ok ← pump clogged)} (specifying that the three switches
are on, there is heat, and whenever the pump gets clogged, fuel is not ok), and ∆ models the possible behavior
of the engine under different conditions (see figure 1).

Given a dlp P , a defeasible derivation for a query q is a finite set of rules obtained by backward chaining from
q (as in a Prolog program) using both strict and defeasible rules from P . The symbol “∼” is considered as part
of the predicate when generating a defeasible derivation. A set of rules S is contradictory iff there is a defeasible
derivation from S for some literal p and its complement ∼p. Given a dlp P , we will assume that its set Π of
strict rules is non-contradictory.2

Definition 2.4 (Defeasible Derivation Tree). Let P be a dlp, and let h be a ground literal. A defeasible
derivation tree T for h is a finite tree, where all nodes are labelled with literals, satisfying the following conditions:

1 For the sake of simplicity, we restrict ourselves to propositional language for this example.
2 If a contradictory set of strict rules is used in a dlp the same problems as in extended logic programming would appear.

The corresponding analysis has been done elsewhere [GL90].

pump fuel ok —< sw1 (when sw1 is on, normally fuel is pumped properly);
fuel ok —< pump fuel ok (when fuel is pumped, normally fuel works ok);
pump oil ok —< sw2 (when sw2 is on, normally oil is pumped);
oil ok —< pump oil ok (when oil is pumped, normally oil works ok);
engine ok —< fuel ok, oil ok (when there is fuel and oil, normally engine works ok);
∼engine ok —< fuel ok, oil ok, heat (when there is fuel, oil and heat, usually engine is not working ok);
∼oil ok —< heat (when there is heat, normally oil is not ok);
pump clogged —< pump fuel ok, low speed (when fuel is pumped and speed is low, there are

reasons to believe that the pump is clogged);
low speed —< sw2 (when sw2 is on, normally speed is low);
∼low speed —< sw2, sw3 (when both sw2 and sw3 are on, speed tends not to be low).
fuel ok —< sw3 (when sw3 is on, normally fuel is ok).

Fig. 1. Set ∆ (example 2.3)

1. The root node of T is labelled with h.
2. For each node N in T labelled with the literal L, there exists a ground instance of a strict or defeasible rule

r ∈ P with head L0 and body {L1, L2, . . . , Lk} in P, such that L = Lσ for some ground variable substitution
σ, and the node N has exactly k children nodes labelled as L1σ, L2σ, . . . , Lkσ.

The sequence S=[r1, r2, . . . rk] of grounded instances of strict and defeasible rules used in building T will be called
a defeasible derivation of h.

Definition 2.5 (Argument/Subargument). Given a dlp P, an argument A for a query q, denoted 〈A, q〉, is
a subset of ground instances of the defeasible rules of P, such that:

1. there exists a defeasible derivation for q from Π ∪ A (also written Π ∪ A ` q),
2. Π ∪A is non-contradictory, and
3. A is minimal with respect to set inclusion.

An argument 〈A1, q1〉 is a sub-argument of another argument 〈A2, q2〉, if A1 ⊆ A2.

Definition 2.6 (Counterargument / Attack). An argument 〈A1, q1〉 counterargues (or attacks) an argument
〈A2, q2〉 at a literal q iff there is an subargument 〈A, q〉 of 〈A2, q2〉 such that the set Π ∪ {q1, q} is contradictory.

Informally, a query q will succeed if the supporting argument is not defeated; that argument becomes a
justification. In order to establish if A is a non-defeated argument, defeaters for A are considered, i. e. counter-
arguments that are preferred to A according to some preference criterion. DeLP considers a particular criterion
called specificity [SL92,GSC98] which favors an argument with greater information content and/or less use of
defeasible rules.3

Definition 2.7 (Proper Defeater / Blocking Defeater). An argument 〈A1, q1〉 defeats 〈A2, q2〉 at a literal
q iff there exists a subargument 〈A, q〉 of 〈A2, q2〉 such that 〈A1, q1〉 counterargues 〈A2, q2〉 at q, and either: (a)
〈A1, q1〉 is “better” that 〈A, q〉 (then 〈A1, q1〉 is a proper defeater of 〈A, q〉); or (b) 〈A1, q1〉 is unrelated by the
preference order to 〈A, q〉 (then 〈A1, q1〉 is a blocking defeater of 〈A, q〉).

Since defeaters are arguments, there may exist defeaters for the defeaters and so on. That prompts for
a complete dialectical analysis to determine which arguments are ultimately defeated. Ultimately undefeated
arguments will be labelled as U-nodes, and the defeated ones as D-nodes. Next we state the formal definitions
required for this process:

Definition 2.8 (Dialectical Tree. Argumentation line). Let A be an argument for q. A dialectical tree for
〈A, q〉, denoted T〈A,q〉, is recursively defined as follows:

1. A single node labeled with an argument 〈A, q〉 with no defeaters is by itself the dialectical tree for 〈A, q〉.
2. Let 〈A1, q1〉, 〈A2, q2〉, . . . , 〈An, qn〉 be all the defeaters (proper or blocking) for 〈A, q〉. We construct the di-

alectical tree for 〈A, q〉, T〈A,q〉, by labeling the root node with 〈A, q〉 and by making this node the parent node
of the roots of the dialectical trees for 〈A1, q1〉, 〈A2, q2〉, . . . , 〈An, qn〉.

A path λ = [〈A0, q0〉, . . . 〈Am, qm〉] in T〈A,q〉 is called argumentation line. We will denote as Sλ =
⋃

i=2k〈Ai, qi〉
(Iλ =

⋃
i=2k+1〈Ai, qi〉) the set of all even-level (odd-level) arguments in λ. Even-level (odd-level) arguments are

also called supporting arguments or S-arguments (interferring arguments or I-arguments).

Definition 2.9 (Labelling of the Dialectical Tree). Let 〈A, q〉 be an argument and T〈A,q〉 its dialectical tree,
then:

3 See [GSC98] for details.

1. All the leaves in T〈A,q〉 are labelled as U -nodes.
2. Let 〈B, h〉 be an inner node of T〈A,q〉. Then 〈B, h〉 will be a U -node iff every child of 〈B, h〉 is a D-node. The

node 〈B, h〉 will be a D-node iff it has at least one child marked as U -node.

To avoid the occurrence of fallacious argumentation [SCG94], two basic additional constraints on dialectical
trees are imposed on any argumentation line λ: a) there can be no repeated arguments (circular argumentation)
and b) the set of all odd-level (even-level) arguments in λ should be non-contradictory wrt Π in order to avoid
contradictory argumentation. Defeaters satisfying these constraints are called acceptable.4

An argument A which turns to be ultimately undefeated is called a justification.

Definition 2.10 (Justification). Let A be an argument for a literal q, and let T〈A,q〉 be its associated acceptable
dialectical tree. The argument A for q will be a justification iff the root of T〈A,q〉 is a U -node.

Example 2.11. Consider example 2.3, and assume our agent is trying to determine whether the engine works
ok by finding a justification supporting engine ok. The set of defeasible rules A = { pump fuel ok —< sw1,
pump oil ok —< sw2, fuel ok —< pump fuel ok, oil ok —< pump oil ok, engine ok —< fuel ok, oil ok }. is an
argument for engine ok, i. e. , 〈A, engine ok〉. But there exists a counterargument B = { pump fuel ok —< sw1,
low speed —< sw2, pump clogged —< pump fuel ok, low speed } which supports the conclusion ∼fuel ok (Π ∪
B ` ∼fuel ok). The argument 〈B,∼fuel ok〉 defeats 〈A, engine ok〉, since it is more specific. Hence, the argument
〈A, engine ok〉 will be provisionally rejected, since it is defeated. However, 〈A, engine ok〉 can be reinstated,
since there exists a third argument C = {∼low speed —< sw2, sw3} for ∼low speed which on its turn defeats
〈B,∼fuel ok〉. Note that the argument 〈D, fuel ok〉 with D = {fuel ok —< sw3} would be also a (blocking)
defeater for 〈B,∼fuel ok〉.

Hence, 〈A, engine ok〉 comes to be undefeated, since the argument 〈B,∼fuel ok〉 was defeated. But there
is another defeater for 〈A, engine ok〉, the argument 〈E ,∼engine ok〉, where E = { pump fuel ok —< sw1,
pump oil ok —< sw2, fuel ok —< pump fuel ok, oil ok —< pump oil ok, ∼engine ok —< fuel ok, oil ok, heat}.
Hence 〈A, engine ok〉 is once again provisionally defeated.

The agent might try to find a defeater for 〈E ,∼engine ok〉 which could help reinstate the original argument
〈A, ok〉, for example 〈{∼oil ok —< heat},∼oil ok〉. It must be noted, however, that this last argument would
be fallacious, since there would exist odd-level supporting arguments for both oil ok (as a subargument of
〈A, engine ok〉) and for ∼oil ok (in 〈{∼oil ok —< heat},∼oil ok〉). Hence 〈{∼oil ok —< heat},∼oil ok〉 should not
be accepted as a valid defeater for 〈A, engine ok〉. Since there are no more arguments to consider, 〈A, engine ok〉
turns out to be ultimately defeated, so that we can conclude that the argument 〈A, engine ok〉 is not justified.
Thus, we conclude that the engine is not working ok. The argument 〈E ,∼engine ok〉, on its turn, is a justification.

Fig. 2(b)-left shows the resulting dialectical tree. Note that 〈A, engine ok〉 is a level-0 supporting argu-
ment, and both 〈C,∼low speed〉 and 〈D, fuel ok〉 are level-2 supporting arguments. Both 〈B,∼fuel ok〉 and
〈E ,∼engine ok〉 are level-1 interfering arguments. λ = [〈A, engine ok〉, 〈B,∼fuel ok〉, 〈C,∼low speed〉] is an
argumentation line.

3 Pruning dialectical trees

Building a dialectical tree is computationally expensive: arguments are proof trees, and a dialectical tree is a tree
of arguments. In both cases, consistency checks are needed. Thus, exhaustive search turns out to be impractical
when modelling real-world situations using argumentative frameworks.

According to the definition of justification, a dialectical tree resembles an and-or tree: even though an 〈A, h〉
may have many possible defeaters 〈B1, h1〉, 〈B2, h2〉, . . . , 〈Bk, hk〉, it suffices to find just one acceptable defeater
〈Bi, hi〉 in order to consider 〈A, h〉 as defeated. Therefore, when analyzing the acceptance of a given argument
〈A, h〉 not every node in the dialectical tree T〈A,h〉 has to be expanded in order to determine the label of the root.
α-β pruning can be applied to speed up the labeling procedure, as shown in figure 2(a). Non-expanded nodes are
marked with an asterisk ?. Note: dialectical trees are assumed to be computed depth-first.

It is well-known that whenever α-β pruning can be applied, the ordering according to which nodes are expanded
affects the size of the search space Consider our former example: when determining whether 〈A, engine ok〉 was
justified, we computed depth-first all arguments involved, thus obtaining the dialectical tree T〈A,engine ok〉 shown
in figure 2(b)-left. However, had we started by considering the defeater 〈E ,¬engine ok〉 before than 〈B,¬fuel ok〉,
we would have come to the same outcome by just taking a subtree of T〈A,engine ok〉 (as shown in figure 2 (b)-right).

Computing this set exhaustively is a complex task, since we should consider every possible counterargument
for 〈A, h〉, determining whether it is an acceptable defeater or not. In order to formalize the ordering for expanding
defeaters as the dialectical tree is being built, we will introduce a partial order �eval as follows:

Definition 3.1. Let S be a set of defeaters for 〈A, h〉. Given two arguments 〈A1, h1〉 and 〈A2, h2〉 in S, we will
say that 〈A1, h1〉 �eval 〈A2, h2〉 iff 〈A1, h1〉’s label is computed before than 〈A2, h2〉’s label.

4 See [GSC98] for an in-depth analysis.

sD��������

XXXXXXXXs U s? s?

J
J
JsD sD

J
J
Js? s?

J
J
Js? s?

sU

J
J
JsU s? s?

J
J
Js? s?

〈A, engine ok〉
(D)

�
��

@
@@

〈B,∼fuel ok〉
(D)

〈E ,∼engine ok〉
(U)

�
��

@
@@

〈C,∼low speed〉
(U)

〈D, fuel ok〉
(U)

〈A, engine ok〉
(D)

〈E ,∼engine ok〉
(U)

Fig. 2. (a) Labeling a dialectical tree with α − β pruning. (b) Dialectical trees (example 2.11)

Example 3.2. In example 2.11, it is the case that 〈B,∼fuel ok〉 �eval 〈E ,∼engine ok〉.

In dialectical trees, only acceptable defeaters are considered, i.e. those which are non-fallacious (as
mentioned in example 2.11). Let 〈A, h〉 be an argument in a dialectical tree. Then we will denote as
AcceptableDefeaters(〈A, h〉) the set {〈B1, h1〉, . . . , 〈Bn, hn〉 } of acceptable defeaters for 〈A, h〉 in that tree.

Example 3.3. Consider example 2.11. It holds that 〈B,∼fuel ok〉 is an acceptable defeater for 〈A, engine ok〉,
whereas 〈{∼oil ok —< heat},∼oil ok〉 is not an acceptable defeater for 〈E ,∼engine ok〉.

The algorithm in figure 3 shows how a dialectical tree can be built and labelled in a depth-first fashion, using
both α-β pruning and the evaluation ordering �eval. In order to speed up the construction of a dialectical tree, our
approach will be twofold. First, given an argument 〈A, h〉, we will establish a syntactic criterion for determining
the set AcceptableDefeaters(〈A, h〉). Second, we will give a definition of �eval which prunes the dialectical tree
according to consistency constraints. Both approaches will be discussed in section 3.1 and 3.2, respectively.

3.1 Commitment set

We will consider three distinguished sets of literals associated with an argument 〈A, h〉:
(a) the set of points for counterargumentation (literals which are conclusions of counterarguments for 〈A, h〉);
(b) the set of points for defeat (literals which are conclusions of defeaters for 〈A, h〉); and
(c) the set of points for attack (literals which are conclusions of acceptable defeaters for 〈A, h〉 in a given dialectical
tree).

We will denote these sets as PointsForCounterarg(〈A, h〉), PointsForDefeat(〈A, h〉), and
PointsForAttack(〈A, h〉,λ), respectively. From definitions 2.6 and 2.7, each of these sets is a subset of
the preceding ones, i.e.:

PointsForAttack(〈A, h〉,λ) ⊆ PointsForDefeat(〈A, h〉) ⊆ PointsForCounterarg(〈A, h〉)

The set PointsForAttack(〈A, h〉,λ) represents the optimal set of literals to take into account for building defeaters
for 〈A, h〉, in the sense that every literal in this set accounts for a conclusion of an acceptable defeater. In [SL92],
the approach to determine all possible defeaters for a given argument 〈A, h〉 considered the deductive closure of
the complement of the literals which are consequents of those rules (in Π and A) used in deriving h. This notion,
which will prove useful for pruning the search space, will be characterized as commitment set:

Definition 3.4. Let P = (Π, ∆) be a dlp, and let 〈A, h〉 be an argument in P. The commitment set of 〈A, h〉 wrt
P, denoted Commit(〈A, h〉), is defined as Commit(〈A, h〉) = {a | a is a ground literal such that Π ∪ Co(A) `
a}, where Co(A) denotes the set of consequents of defeasible rules in A. If S = {〈A1, h1〉, . . . 〈An, hn〉} is a set
of arguments, then Commit(S) = { a | a is a ground literal such that Π ∪

⋃
i=1...n Co(Ai) ` a}.

The set Commit(〈A, h〉)5 is suggested in [SL92] as an approximation to PointsForAttack(〈A, h〉,λ). From
the preceding inclusion relationship, it follows that PointsForAttack(〈A, h〉,λ) ⊆ Commit(〈A, h〉). One of our
goals is to find a better upper bound for PointsForAttack(〈A, h〉,λ). Next we introduce a lemma to consider
a proper subset of Commit(〈A, h〉) for finding acceptable defeaters by backward chaining, thus reducing the
number of defeaters to take into account. That subset is given by the the consequents of defeasible rules in A.

Lemma 3.5. 6 Let 〈A, h〉 be an argument. Let 〈B, j〉 be an acceptable defeater for 〈A, h〉, i.e., 〈B, j〉 defeats
〈A, h〉. Then B is also an argument for a ground literal q, such that q is the complement of some consequent of
a defeasible rule in A, and 〈B, q〉 is an acceptable defeater.

Hence, we can find a better upper bound for the set PointsForAttack(〈A, h〉,λ) by considering the set Co(A).
Note that this set can be immediately computed once the argument 〈A, h〉 has been built, whereas the approach
given in [SL92] involved computing the much more complex deductive closure (Π ∪ A)`.

5 S stands for the set formed by the complement of every literal in S. E.g: {a,∼b} = {∼a, b}.
6 The lemmas in this paper are based on the ones presented in [Che96] and [Gar97].

Algorithm 3.1 BuildDialecticalTree
Input: 〈A, h〉
Output: T〈A,h〉

{uses α-β pruning and evaluation ordering �eval }
Let S = AcceptableDefeaters(〈A, h〉)
If S 6= ∅

then

While there is no 〈Ai, hi〉 ∈ S labelled as U

For every argument in S

Let 〈Ai, hi〉= minimal non-labelled element in (S,�eval)
BuildDialecticalTree(〈Ai , hi〉) getting as a result T〈Ai,hi〉

Put T〈Ai,hi〉 as a immediate subtree of 〈A, h〉.
If there exists some T〈Ai,hi〉 labelled as U

then Label T〈A,h〉 as D

else Label T〈A,h〉 as U

else

T〈A,h〉 = 〈A, h〉
Label T〈A,h〉 as U

Fig. 3. Algorithm for building and labelling a dialectical tree

3.2 Commitment and evaluation order. Shared basis

As remarked in section 2, fallacious argumentation is to be avoided. In DeLP, this means that all odd-level (even-
level) arguments in an argumentation line λ= [〈A0, h0〉, 〈A1, h1〉, . . . , 〈Ak, hk〉] must be non-contradictory wrt
Π in order to avoid contradictory argumentation. Def. 3.4 captures the notion of commitment set for a given
argument 〈A, h〉. We will use that notion for pruning the search space in order to determine possible defeaters
for 〈A, h〉, without considering the whole set Co(A).

Lemma 3.6. Let λ be an argumentation line in a dialectical tree T〈A,h〉, such that Sk
λ denotes the set of all

supporting arguments in λ with level ≤ k. Let a be a ground literal, a ∈ Commit(Sk
λ). Let 〈B, j〉 ∈ I

λ
, such that

its level is greater than k. Then a 6∈ PointsForAttack(〈B, j〉, λ).

This lemma establishes the following: assume that an argumentation line has been built up to level k. If an
interferring argument were then introduced at level k′ > k, it could not be further attacked by a supporting
argument with conclusion ∼a at level k′′ > k′, if it is the case that a belongs to Commit(Sk

λ). Thus, the former
lemma accounts for the need of not falling into ‘self-contradiction’ when an argument exchange is performed. In
order to introduce new supporting (interferring) arguments, the proponent (opponent) is committed to what he
has stated before. This allows us to further reduce the set of literals Co(〈A, h〉) to take into account for determining
defeaters for 〈A, h〉. As an argumentation line is being built, if a is a literal in a supporting (interferring) argument
at level k, its complement a cannot be the conclusion of supporting (interferring) arguments at level k ′ > k.

As a direct consequence from lemma 3.6, literals which are present in both supporting and interferring argu-
ments up to level k in a given argumentation line cannot be further argued at level k′ > k. We can also draw a
parallel with an informal argument exchange as before: if the proponent (opponent) concedes some point to the
opponent (proponent), that point is beyond question for further argumentation.

Definition 3.7 (SharedBasis). Let λ = [〈A0, h0〉, . . . , 〈An, hn〉] be an argumentation line in T〈A,h〉. We define
SharedBasis(λ, k) as the set of ground literals in the deductive closure of: a) Π; b) the consequents of rules in
both Sλ and Iλ up to level k within the argumentation line λ. Formally:7

SharedBasis(λ, k) = {a : a is a ground literal, and a ∈ (Π ∪ (Co(DRules(Sk
λ)) ∩ (Co(DRules(Ik

λ)))`}

From this definition we can state the following lemma, which excludes literals belonging to the shared basis
(up to a given level k) as points for attack for arguments at deeper levels.

Lemma 3.8 (Commitment Lemma). Let a ∈ SharedBasis(λ, k), k ≥ 0. Then a 6∈ PointsFor-
Attack(〈B, j〉,λ), for any argument 〈B, j〉 ∈ λ.

From lemma 3.5 and 3.8 it follows that those literals belonging to Co(A) which are in SharedBasis(λ, k)
cannot be the conclusions of defeaters for 〈A, h〉. This allows us to get an improved upper bound for the potential
points for attack when computing defeaters for a given argument 〈A, h〉 at level k in a dialectical tree.

PointsForAttack(〈A, h〉,λ) ⊆ Co(〈A, h〉) − SharedBasis(λ, k) ⊆ Co(〈A, h〉) ⊆ Commit(〈A, h〉)

7 If S is a set of arguments { 〈A1, h1〉, 〈A2, h2〉, . . . , 〈Ak, hk〉 }, then DRules(S) denotes the set of all defeasible rules in
S, i.e., DRules(S) = A1 ∪ A2 ∪ . . . ∪ Ak.

3.3 Preference criterion

From the preceding analysis we can come back to the original question: how to choose those defeaters belonging
to the most ‘promising’ argumentation line? (i.e., those which are more prone to break the debate as soon as
possible). From our preceding results, we can introduce the following definition for �eval:

Definition 3.9 (Evaluation ordering based on shared basis). Let λ = [...., 〈A, h〉] be an argumentation
line whose last element is an argument 〈A, h〉 at level k − 1. Let 〈A1, h1〉 y 〈A2, h2〉 be two possible defeaters for
〈A, h〉, so that choosing 〈A1, h1〉 would result in an argumentation line λ1 = [...., 〈A, h〉,〈A1, h1〉], and choosing
〈A2, h2〉 would result in an argumentation line λ2 = [...., 〈A, h〉,〈A2, h2〉]. Then 〈A1, h1〉 �eval 〈A2, h2〉 iff

Co(〈A1, h1〉)− SharedBasis(λ1, k) ⊆ Co(〈A2, h2〉)− SharedBasis(λ2, k)

This evaluation order can be now applied in the algorithm 3.1. An advantageous feature of this evaluation
order is that it is easy to implement. Given two alternative defeaters for an argument 〈A, h〉, the one which shares
as many ground literals as possible with the argument (〈A, h〉) being attacked should be preferred. This policy
maximizes naturally the set SharedBasis.

Example 3.10. Consider examples 2.3 and 2.11. Figure 2 showed two alternative ways of determining whether
〈A, engine ok〉 is a justification. The consequents of defeasible rules are, in this case, Co(A) = { engine ok,
fuel ok, oil ok, pump fuel ok, pump oil ok }. The argument 〈A, engine ok〉 has two acceptable defeaters:
〈B,∼fuel ok〉 and 〈E ,∼engine ok〉. In the first case, Co(B) = { pump clogged, pump fuel ok, low speed },
and in the second case, Co(E) = { ∼engine ok, fuel ok, oil ok, pump fuel ok, pump oil ok }. If we choose the
defeater 〈B,∼fuel ok〉, we have Co(A) − SharedBasis(λ1, 1) = { ¬engine ok, ¬fuel ok, ¬oil ok, ¬pump oil ok

}. Choosing the defeater 〈E ,∼engine ok〉, we have Co(A) − SharedBasis(λ2, 1) = { ¬engine ok }. Since
Co(A) − SharedBasis(λ2, 1) ⊂ Cpl(Co(A)− SharedBasis(λ1, 1), the defeater 〈E ,∼engine ok〉 should be tried
before than 〈B,∼fuel ok〉 when computing the dialectical tree T〈A,engine ok〉.

4 Conclusions and related work

Defeasible Argumentation is a relatively new field in Artificial Intelligence. Inference in argument-based systems
is a complex issue, and we think our results give a relevant contribution to currently existing work [PV99,Vre97].
Given two arguments 〈A1, q1〉 and 〈A2, q2〉, other alternative formalizations (such as Prakken and Sartor’s [PV99]
or Vreeswijk’s [Vre97]) consider a full consistency check Π ∪ A1 ∪ A2 ` p,∼p to determine whether two
arguments attack each other. In this paper, we characterized attack in a goal-oriented way, which rendered easier
many implementation issues, and helped to prune dialectical trees. It should be noted that DeLP [Gar97] has
been implemented using this goal-oriented attack, which resembles the approach used by [KT99] for normal
logic programs. However, DeLP provides richer knowledge representation capabilities, since it incorporates both
default and strict negation.8

Studying the need of avoiding fallacious argumentation [SCG94], we arrived at the notion of commitment
and shared basis, which allowed us to define a preference criterion for dynamically obtaining the (on the average)
shortest argumentation lines when the justification procedure is carried out. Although our analysis was partic-
ularly focused on DeLP, the approach presented in this paper can be adapted to many existing argumentation
systems.

References

[Che96] Carlos Iván Chesñevar. The Problem of Inference in Argumentative Systems (MsC Thesis). Departamento de
Cs. de la Computacion, Univ. Nac. del Sur, B.Blanca, Argentina, December 1996.

[Gar97] Alejandro J. Garcia. Defeasible Logic Programming: Definition and Implementation (MSc Thesis). Departamento
de Cs. de la Computacion, Univ. Nac. del Sur, B.Blanca, Argentina, July 1997.

[GL90] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In D. Warren and P. Szeredi, editors, Proc.

ICLP, pages 579–597. MIT Press, 1990.
[GSC98] A. J. Garcia, G. R. Simari, and C. I. Chesñevar. An argumentative framework for reasoning with inconsistent

and incomplete information. In Workshop on Practical Reasoning and Rationality. ECAI-98, 1998.
[KT99] Antonios C. Kakas and Francesca Toni. Computing argumentation in logic programming. Journal of Logic and

Computation, 9(4):515–562, 1999.
[PV99] Henry Prakken and Gerard Vreeswijk. Logics for Defeasible Argumentation. In Dov Gabbay, editor, Handbook

of Philosophical Logic. Kluwer Academic Publisher, 1999.
[SCG94] G. R. Simari, C. I. Chesñevar, and A. J. Garcia. The role of dialectics in defeasible argumentation. In XIV Conf.

Int. de la Soc. Chilena para Cs. de la Computacion. Concepcion, Chile, November 1994.
[SL92] Guillermo R. Simari and Ronald P. Loui. A Mathematical Treatment of Defeasible Reasoning and its Implemen-

tation. Artificial Intelligence, 53:125–157, 1992.
[Vre97] Gerhard A. Vreeswijk. Abstract argumentation systems. Artificial Intelligence, 90:225–279, 1997.

8 A full analysis of these features is beyond the scope of this paper.

