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Abstract. In the last years there has been an increasing demand of a variety of logical
systems, prompted mostly by applications of logic in Al logic programming and other re-
lated areas. Labeled Deductive Systems (LDS) were developed as a flexible methodology to
formalize such a kind of complex logical systems.

In the last decade, defeasible argumentation has proven to be a confluence point for many
approaches to formalizing commonsense reasoning. Different formalisms have been developed,
many of them sharing common features.

This paper presents a formalization of an LDS for defeasible argumentation, in which the
main issues concerning defeasible argumentation are captured within a unified logical frame-
work. The proposed framework is defined in two stages. First, defeasible inference will be
formalized by characterizing an argumentative LDS. That system will be then extended in
order to capture conflict among arguments using a dialectical approach. We also present
some logical properties emerging from the proposed framework, discussing also its semanti-
cal characterization.

1 Introduction and motivations

A well-known problem in knowledge representation (KR) is that the available infor-
mation is usually incomplete and potentially inconsistent. In almost every domain
of human knowledge, beliefs are subject to change, and this implies that the con-
clusions to be obtained from them are generally contradictory. This motivates the
study and development of KR techniques to cope with this problem.

As pointed out by [Carbogim et al., 2000], two approaches are commonly used
to solve the problem of incomplete information. One of them consists in restoring
consistence (such as in belief revision). The other approach involves performing
reasoning by taking into account this potential inconsistency within a ‘rational’
frame. Defeasible argumentation is such an approach, allowing us to reason with
incomplete information, building and evaluating relevant arguments which may lead
to contradictory conclusions.

Argumentation bears, in many respects, a strong resemblance with the approach
used in truth-maintenance systems (TMS) proposed originally by [Doyle, 1979] for
inconsistency handling. However, there is an important difference: in TMS, the main
goal is to keep a ‘trace’ of the reasons used to arrive to a certain conclusion, so that
we are able to explain how we arrived to it in case a conflict appears. Should a
piece of knowledge p be retracted to restore consistency, then the TMS can help us
identify which conclusions are to be affected with the removal of p. Argumentation,



on the contrary, aims at clarifying which are the sources of conflict in a rational and
methodic way.

Formal argumentation frameworks are characterized by representing certain fea-
tures of informal argumentation using a formal language, along with an inference
mechanism.! Although these frameworks differ in their aims and characterization,
the notion of argument is more or less the same, with a strong resemblance to the
notion of proof in logic.

The formalization of reasoning with incomplete information has been a major
goal in Al since the ’80s. Different approaches were developed to capture non-
monotonic reasoning, such as circumscription [McCarthy, 1980] and default logic
[Reiter, 1980], among many others. Argumentation differs from these approaches
since it is motivated in defeasible reasoning, where tentative conclusions are ob-
tained departing from uncertain or incomplete information. When new information
is available, conclusions can no longer be valid. This motivated the development of
various systems for defeasible argumentation [Loui, 1987], [Simari and Loui, 1992],
[Garcia, 1997]. Defeasible argumentation has recently undergone an important cross-
breeding with logic programming and legal reasoning resulting in subareas with
well-defined profiles and goals [Prakken and Vreeswijk, 1999].

In the last years, there has been a growing interest in the research commu-
nity in studying defeasible argumentation under a formal setting (see for exam-
ple [Parsons et al., 1998 Prakken, 2000]). We are concerned in studying these aspects
within a logical system, using the DelLP framework for defeasible argumentation as
a basis [Simari and Loui, 1992,Simari et al., 1994,Garcia, 1997,Garcia et al., 1998|.
In our logical framework we want to capture the main issues involved in defeasible
argumentation by specifying a suitable underlying logical language and its associated
inference rules. In order to accomplish this goal we will make use of labeled deductive
systems [Gabbay, 1996], or LDS. LDS offer an attractive approach to formalizing
complex systems, since they allow to characterize the different components involved
in a logical system by using labels. Among other advantages, labels allow the possi-
bility of bringing meta-level features into the object level of a given logic (e.g. the
use of labels to trace the proof of a goal). Our main motivation is the definition of
a LDS to study and compare different formal aspects of defeasible argumentation.

The rest of this paper is structured as follows: section 2 introduces an outline
of our approach, as well as a motivating example. Section 3 describes the formal-
ism using for knowledge representation. Section 4 focuses on defining inference for
building arguments, and section 5 extends the previous notion to handle dialectical
trees. In section 6 we discuss logical properties of the proposed framework as well as
semantical considerations. Section 7 summarizes some of the current research being
carried out. Finally, section 8 concludes.

2 An outline of our approach

We want to capture both defeasible knowledge representation and argumentative
inference within a logical system (I',p~ ), in which I" represents the agent’s knowl-

! See [Carbogim et al., 2000], [Prakken and Vreeswijk, 1999], [Chesiievar et al., 2000b] for details about
different argumentation frameworks.
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Fig. 1. Formalizing argumentation using LDS

edge base and |~ stands for a consequence relation. Traditionally, a logical system
(I',~ ) allows the inference of new wffs from those available in I" using the rules of
inference that characterize the notion of logical consequence |~ . In order to formal-
ize defeasible argumentation within a logical system (which involves the well-known
problems associated with non monotonic reasoning), we will make use of a LDS.
Since the agent’s knowledge base I" will contain incomplete and potentially incon-
sistent information, our intelligent agent will be provided with a defeasible LDS
(I ,k\gw) which will allow him to arrive to tentative conclusions. Those conclusions
will correspond to labeled formulas label:w f f, where label will be associated with
the notion of generalized argument (closely related to the definition given originally
in [Simari and Loui, 1992]).

In other words, the consequence relation l'\,fwg will allow our agent to derive la-
beled wffs having the form generalized argument:conclusion, where generalized ar-
gument will be a wif in a labeling language Lpgpers, and conclusion will be a ground
literal in a knowledge representation language Ly p. In this setting, a (generalized)
argument will represent a tentative proof our intelligent agent can build in order
to support p. However, our agent could also be able to build an argument support-
ing ~ p from the knowledge available in I'. This leads to a comparative, recursive
analysis of arguments in which a given argument should be compared with all those
counter-arguments which may defeat it. To model this process, our approach will
consist in extending the consequence relationship h‘m, in order to obtain a new
consequence relationship |'\% Those wifs derivable from I via |'\% will have the form
dialectical label:conclusion, where dialectical label stands for the notion of dialectical
tree [Simari et al., 1994] in an argumentation framework.

The elements in our ontology are summarized in figure 1. The lower level repre-
sents the knowledge base I', from which our agent will be able to build arguments
using a defeasible LDS. In order to decide whether an argument is a warrant or not,
a comparison among arguments is needed, which results in computing an accept-
able dialectical tree. This will be captured by the consequence relation PvT within an
argumentative LDS. Figure 2 shows a sketch of the proposed framework.

2.1 An example

Next we will introduce an example which will be used for introducing different
concepts along this paper.

Example 2.1. Consider an intelligent agent which has to control an engine whose
performance is determined by three switches swl, sw2 and sw3.2 The switches reg-
ulate different features of the engine’s behavior, such as pumping system and work-

2 For the sake of simplicity, we restrict ourselves to propositional language for this example.
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Fig. 2. Sketch of the proposed framework

fuel is ok —~ swl is on f—= swl

oil is ok —< sw?2 is on < sw2
engine works ok ——~ fuel & oil ok— f,1
engine not ok — fuel, oil & heat ~ok— f,l,h
oil not ok — heat ~lL< h

fuel not ok — low speed & swl is on ~f—~ swl,ls
speed is low —  sw2 is on ls— sw2
speed is not low — sw2 and sw3 are on ~ls—~ sw2,sw3
swl is on swl

sw2 is on SW24—

sw3 is on SwWI<—

there is heat h

Fig. 3. Set A (example 2.1)

ing speed. We can model the engine behavior using a dlp program (II, A), where
II = {(swl <« ),(sw2 < ),(sw3 < ),(heat < )} (specifying that the three
switches are on, and there is heat) and A specifies defeasible information, modeling
the possible behavior of the engine under different conditions (see figure 3).

Using an argumentative framework (such as DELP), the agent in the previous
example can build arguments for and against the ground literal engine_ok. Our goal
will be to formalize a logical system in which this process can be modeled. In the
following section we will show how to formalize this knowledge base in terms of
a labeled language. Then we will introduce a defeasible LDS which will allow the
agent to derive different generalized arguments. A global analysis of these generalized
arguments will be then performed, which will allow the agent to conclude whether

there is (or is not) a warranted argument for believing that the engine is working
ok.

3 Knowledge Representation

In this section we will introduce a knowledge representation language Lk g for per-
forming defeasible inference, together with a labeling language Liapers- These lan-
guages will be used to define the object language L4, to be used in our defeasible
LDS.



Following Gabbay’s terminology [Gabbay, 1996], the basic information units in
L 4rg will be called declarative units, having the form Label:wff. In our approach we
will restrict wffs in labeled formulas to ground literals. As we will see along this
section, a ground literal can be understood as conclusion of an argument, which will
be defined by the label.

A label in a formula L:a will provide three elements which are convenient to take
into account when formalizing defeasible argumentation, namely:

1. For every declarative unit L:a the label L will distinguish whether that declara-
tive unit corresponds to defeasible or non-defeasible information.

2. The label L will also provide an unique name to identify a wff in the knowledge
base I".

3. When performing the inference of a declarative unit L:a from a set I" of declar-
ative units, the label L will provide a trace of the wifs needed in the derivation
of L:a from I'.

Wiffs in our knowledge representation language Lxr will be a subset of a classic
propositional language L, restricted to implications and facts. A modality (label)
will be attached to both kinds of wifs: defeasible and non-defeasible. Formally:

Definition 3.1 (Language Lxgr). The language L r will be composed of

1. A countable set of propositional atoms, possibly subindicated. We will denote
propositional atoms with lowercase letters. EFxample: a, b, ¢, d, e, ..., a1, as, as
are propositional atoms.

2. Logical connectives A\, = and <.

The set of all atoms in Lk p will be denoted as Atoms(Lkr).

Definition 3.2 (Wffs in Lxg). Wffs in Lxgr will be defined as follows:

1. If a is an atom in Lkg, then a and ~a are wffs called literals in Lxr. We will
denote as Lit(Lkr) the set of all literals in Lkg.
2. If aq, ...qy, B are literals in Lkr, then < aq,...q; is a wff in Lgg.

We will denote as Wffs(Lir) the set of all wffs in Lig.

Note that wffs in Lxr can be understood in a logic programming setting: im-

plications correspond to rules, and literals can be understood as facts.® Labels add
an additional feature to these rules, which can be defeasible or non-defeasible. More
precisely, our formalization will follow the approach used in defeasible logic program-
ming [Garcia, 1997] for representing knowledge.
For the sake of simplicity, when referring to the language Lxpr the following con-
ventions will be used: Greek lowercase letters a, 3, v will refer to any wff in Lgg.
Lowercase letters (such as h, ¢, etc.) will be used for referring to ground literals in
L r. Greek uppercase letters 1, @, I' will refer to a set of wifs in Lxr. The con-
junction aq A as A ... A ap will be simply written as aq, as, ..., ag. Separately we
will define a labeling language Lr e, associated with wifs in Lgg.

3 We will consider a negated literal ~a in Lxr as standing for a new predicate name ~-a. As usual, we
will assume the equivalence ~~a = a.



Definition 3.3 (Labeling constants). A set Labels = { ny, ny, ..., dy, dp, ...}
of labeling constants will include constant names having the form n; or d;. A set of
labeling constants will be denoted as Ly, Lo, ..., Lg.

Definition 3.4 (Labeling language Lj.pe5). A label L in our labeling language
Lrapers can be either an argument label or a dialectical label, defined as follows:

1. An argument label will be a tuple (L;, @) where L; C Labels, ® C o(W ffs(Lkr))-
The set of all argument labels that can be defined from Labels and Lxgr will be
denoted as ArgumL(Labels, LxRg).

2. If (Li, @) is an argument label, then T ( (L;,®) ), with j € Nat and Ty ( (L;, )
), with k € Nat are dialectical labels in L gpers. For the sake of simplicity, we will
write TP to denote a generic dialectical label TP ({L;, ®) ), for a given argument
label (L;, ®). We will also write T, to denote either the functor TP or the functor
TY.

3. If Ty, ..., T, are dialectical labels, then TY (T, ..., T,), with j € Nat, ng
{1...k}, and TP (T, ..., T,), with k € Nat m¢ {1...k} will also be dialectical
labels in Liapers- The set of all dialectical labels that can be defined from Labels
and Lk g will be denoted as Dialect L(Labels, Lk r)

It should be noted that in order to characterize a defeasible LDS argument labels
will suffice; dialectical labels will be used in characterizing an argumentative LDS,
as discussed in section 5.

Definition 3.5 (Defeasible Labeled Language L .,4). If Liapeis is a labeling lan-
guage, and Lk g is a knowledge representation language, then the defeasible labeled
language, denoted L 4,4, is defined as Larg= (Lrabets; Lxr)

Definition 3.6 (Declarative Unit). Given a language Lar4, a declarative unit
will be a pair Label:«, where Label is a label written in the language Lpzpers, and «
1s a wff in Lxg.

If Label=(L;, @) is an arqument label, then Label:a will be called an argumen-
tative declarative unit. If L; is a singleton, then Label:a will be called an atomic
declarative unit.

From now on we will refer to a declarative unit Label:a by the abbreviated form
du. Greek uppercase letters I', I, T will be used to refer to sets of dus, when no
ambiguity arises.

3.1 Argumentative Theories

Intuitively, a theory I' C Wffs(L 4,4) will constitute the knowledge base from which

an intelligent agent will perform its inference process. We will assume that the agent

is provided with a logic programming inference mechanism as a basis. Given a set

P C Wffs(Lkgr), we will write P ¢ to denote that ¢ follows from P by using

SLDNF resolution [Lloyd, 1987]. Furthermore, we will write P L to denote that

complementary literals p and ~p can be derived via a defeasible derivation from P.
A theory I" will be defined in terms of argumentative dus, distinguishing:



— Non-defeasible information, given by argumentative dus of the form ({n;}, ):a
— Defeasible information, given by argumentative dus of the form ({d;}, ?):«

Labeling constants n; and d; will denote unique names for declarative units. In this
ontology, a declarative unit ({d;},{8 < «}):f + «a will stand for the defeasible
rule -~ « in defeasible logic programming [Garcia, 1997].

Ezample 3.7. Let Labels = {ny, ny,n3, ng,dy, dp, ds,dg,ds}, and let Lxg be a suitable
KR language. The knowledge base involved in example 2.1 can be characterized in
terms of the following declarative units:

— Facts: ({n1},0):swl, ({n2},0):sw2, {({n3},D):sw3 and ({n4},D):A.

— Rules:
({di}{f < swl }):f « swl,
({da}{l + sw2 }):il «+ sw2,
({ds},{ok « f,1}):0k « f,1,
({dg},{~0k « f,l,h }):~ok < f,1 h,
({ds}.{~1 «-h}):~ls=h,
({de },{~f <—swl,ls}):~ f¢—swl, s,
({d7},{1s —sw2}):ls¢sw?2,
({dg},{~Is —sw2,;sw3}):~ls¢—sw2, sw3

Next we will focus on sets of declarative units (theories) that respect certain
requirements to constitute an acceptable knowledge base for an intelligent agent.
This situation is formalized through the following definition:

Definition 3.8 (Argumentative theory I'). Let I’ ={ vy, 72, ..., Y%} be a finite
set of declarative units in La,4. Let IL(I") be the set of all wffs in Lxgr associated
with non-defeasible declarative units in I, i.e., IL(I") = {a| {{n; },0):ael'}. We will
say that I' is an argumentative theory if v; is an atomic declarative unit, i = 1...k,
and IL(T") i L.

Example 3.9. Consider the set I' of facts and rules in example 3.7. From defini-
tion 3.8, it follows that I is an argumentative theory.

The labeling system makes it easier to formalize a proof theory based on natural
deduction. For every inference rule, labels propagate information from the premises
to the conclusion. In this way, given a du (L, ®):« that has been inferred from a
given theory I', the set L will provide a ‘history’ of the proof carried out to conclude
a. If @ = (), then no defeasible information was needed in order to conclude a.
Therefore wifs of the form (L, ):a will correspond to non-defeasible inferences. On
the contrary, (L,®):a, @ # (), denotes a defeasible inference, and @ is the set of
facts, presumptions, defeasible rules and non-defeasible rules needed to conclude
a. Intuitively, o will be ’supported’ by the argument &. Some inference rules for
labeling will incorporate additional preconditions which should be satisfied for an
inference rule to be applied. This preconditions are mainly intended for ensuring
that the defeasible wff (L, ®):a can be inferred only if certain consistency checks are
satisfied.



Example 3.10. Consider the argumentative theory I' according to examples 2.1
and 3.7. Then it should not be valid to infer a labeled wff such as

({ny,n3,d7,dsg}, {sw2,sw3,ls « sw2,~Ils + sw2,sw3}):ls,~ls

since both ls and ~lIs follow from @ = {sw2, sw3,ls < sw2,~ls < sw2, sw3}.

In the next section we will introduce an inference relation which will allow us to
capture the notion of consistent proofinvolving defeasible information. The inference
relation will ensure that only consistent proofs can be derived. These consistent
proofs will be called generalized arguments.

4 Deriving arguments

Our goal will be to define a logical system (I, I'Lg)’ where I' is a knowledge base as
previously described, and |'\:W is a consequence relation. The object language will
be L 4,4, and inference rules will be formulated in a natural deduction style.*

4.1 Natural deduction rules for |’\,'Mg

1. Introducing non-defeasible information: Any wff in I" corresponding to non-
defeasible information can be introduced in a proof.

r, ({n}, 0):«

for any ({n;},0):a € I'.
2. Introducing defeasible information: Any wiff in I" corresponding to defeasible
information can be introduced in a proof if it is consistent wrt ITI(I).

II(I) U & F L
r, {di},2:):«

for any ({di}, ®?1):a € I.
3. Introducing conjunction: If (Ly, @;):cv and (Lo, P5): are dus such that TI(I")U
&1 U Dy I p,~p, then the conjunction «, 5 can be derived. Formally:

F, <L1,¢1>§O{ <L2,¢2>15 H(F) U 451 U 452 bLJ_
F, <L1UL2,¢1U@2>30&,B

4. Eliminating implication: As a precondition for applying modus ponens, a sim-
ilar criterion as the one used in the previous rule will be applied.

F, <L1,¢1>3ﬁ<—& <L2,¢2>§C¥ H(F) U &1 U Py bLJ_
F, <|_1 U Lg,fpl U ¢2>3ﬁ

Definition 4.1 (Defeasible LDS). The pair ( I, hawg) defines a defeasible LDS,

where I' C W ffs(Larg) is an argumentative theory and |~ 15 the consequence
relation characterized by the inference rules R1, R2, R3 and R4

4 Inference rules are numbered consecutively for the ease of reading.



Definition 4.2 (Generalized argument). Let I' be an argumentative theory, and
let h be a ground literal such that I' |~ .. (L,®):h. Then (L, ®) will be called a
generalized argument for h.

For the sake of simplicity, and as long as no confusion arises, we will write
A for denoting the set @ in an argumentative label (L, ®). Hence we will write an
argumentative du (L, ®):h as A:h. Alternatively, we will say that A:h is an argument.

Given two arguments (Ly,®1):q and (L, ®):h, we will say that (L;,®;):q is a
subargument of (L, ®):h if Ly C L and &, C &.

Example 4.3. Consider the argumentative theory I" as defined in examples 2.1 and 3.7.
Then it holds that Fl’)’w ({n1,ny,dq,d>,d3}, A;):0k, where A; = { swl, sw2 , f+swl,
l«—sw?2, ok<f,1 }, by the succesive application of the rules R1, R1, R4 R4, R3 and
R4.Note that this labeled wff corresponds to a generalized argument. Some other
generalized arguments that can be derived from I" via h’wg are
({n1,n3,n4,dy,ds, dg}, Ao):~ok with Ay = { ~ok«f 1, h, fswl, l+sw2,
swl, sw2, h '}
({n2,n3,dg}, As):i~ls with Az = {~Is<sw2, sw3, sw2, sw3, }
({n1,n2,d7,dg}, Ay):~f with Ay = {~f<—swl,ls, ls<—sw2, swl, sw2,}

({ng,ds}, As):~l with A5 = {l<h, h}
Hence we have the generalized arguments A;:0k, Ay:~f, As:~ls, Ag:~ok and Asz:~lL.
Note that A;":f and Ajy':ls are generalized subarguments of A;:0k and As:~ f, with
Ay = {f<swl} and Ay’ = {ls<—sw2}, respectively.

5 An argumentative LDS

So far a formalization of defeasible inference has been introduced, in which the
notion of generalized argument has been presented. However, given an argumenta-
tive theory I" an intelligent agent can obtain different, conflicting arguments. Thus
our agent could be able to find that Fl’j;,g-Aih and Fl'\grg.A:Nh. In order to decide
among conflicting arguments a preference criterion is needed, as well as a global
analysis in which the attack relationships between those conflicting arguments can
be captured. This analysis will be formalized in terms of an acceptable dialectical
tree [Simari et al., 1994]. This will lead to defining a new logical system, an argu-
mentative LDS (I, ).

Conflict between arguments will be captured as follows. An argument A:h will
counterarque an argument B:q whenever there exists a subargument B':¢’ of B:q such
that I"U{h, ¢'}_L. If A:h is better than B':q" according to some preference criterion
(e.g.specificity, as in [Simari and Loui, 1992]), then A:h will defeat B:q.

Ezample 5.1. Consider example 4.3. We will assume that the following relations
between arguments hold: De feats( Ay, Ay), Defeats(As, As), De feats(A4, Ay) and
Defeats(As, Ay).



5.1 Building dialectical trees

When defining |'\%, inference rules for constructing acceptable dialectical trees are
needed [Simari et al., 1994]. As already stated in the introduction, we will concep-
tualize these trees as dialectical labels. Generalized arguments in a dialectical setting
will also be required to be minimal, following [Simari and Loui, 1992].

The possibility of building dialectical labels is restricted to certain constraints.
On the one hand, the root of any immediate sublabel T" associated with a dialectical
formula T:h should be a defeater for the root of T. On the other hand, dialectical
sublabels should respect constraints known as concordance and no circularity, in
order to avoid fallacious reasoning. Following Gabbay’s approach, we capture these
constraints by introducing a condition VSTree, which basically stipulates what kind
of labels we want to infer as valid. Next we will briefly sketch the main features of
such a condition.

Definition 5.2 (Condition VSTree).

Let T'(B, T{(C1),...,Tx(Ck)):q and T(A,...):h be dialectical formulas. Then T’
will be an immediate dialectical sublabel associated with T, denoted VSTree(T (A, ...):h,
T'(B, ...):q), iff the following conditions hold:

1. (Progressive Defeat)
The wff B:q should be a defeater for A:h, that is, it should be the case that B:q
defeats A:h).

2. (Concordance)
The set S of odd-level (even-level) arguments in every path in the resulting tree
should be concordant, i.e., INI")U S} L

3. (Non-circularity)
For every path in T, it should hold that there is no circularity when building a
new path including A and B.

Alternatively, if VSTree(T(A,...):h, T'(B,...):q) is satisfied, we will say that the
dialectical formula T'(B, ...):q attacks T(A, ...):h.

Next we will introduce the inference rules needed for characterizing dialectical
trees.

5. Introducing a dialectical tree: Given a generalized argument A:h which is
minimal, an atomic dialectical tree can be built, in which A corresponds to the
root of the tree.

A:h AA" C A: A:h
T(A):h

6. N-level dialectical tree: Given an atomic dialectical wff T*(.A):h, a more com-
plex wif can be built by introducing all immediate dialectical sublabels T7... T}
which are valid wrt VSTree.

5 In the final formalization two cases should be considered, blocking and proper defeat. A full analyisis is
beyond the scope of this paper.



T*(A):h  Ti(Bi,...): 1 Tj(Bg,...):qe VSTree(T*(A), T;)
T (A T;,....T))h

Ezample 5.5. Consider example 4.3. Then some of the wffs that can be derived from
I' via pvare: Ti(Ar):0k, To(Az):~f, T3(As)i~ls, Ta(Ag):~ok and T5(Asz):~I (all of
them by applying R5).

Rule R6 allows to build a more complex dialectical label from atomic ones. Thus
it holds that I" ) 71 (As, T2(As), Ta(As)):0k. From rule R6 it also holds that

D T A T (As, To(As)), Tal(Ay)) ok

However, I' & Ty (A, Ta( Az, Ta(As)), Ta(Aa, T5(As))):0k, since A, is not concordant
wrt T5(As) (ie., II(T) U A; U A5 F1).

5.2 Marking of a dialectical tree

A wif T:h stands for an acceptable dialectical tree [Simari et al., 1994] whose root is
an argument supporting a ground literal A. However, it is still necessary to determine
whether a dialectical tree supports a justified ground literal. In order to do this, a
marking procedure should be applied.

Next we will introduce inference rules for performing that marking procedure
on dialectical labels. As a result, we will be able to write TV and TP, standing for
undefeated and defeated dialectical trees, respectively.

7. Marking an atomic dialectical wif: (M-Atom) A dialectical wif is warranted
iff there are no valid sublabels associated with it. Formally:

T*(A):h
TV (A):h
8. Marking a dialectical wff as defeated: (M-1D) A dialectical wff can be
marked as defeated if there exists at least one immediate sublabel marked as
undefeated.

T*(A,T3,...,T;, ..., T,):h  TY(B;...):q : VSTree(T*(A),TY)
TP(A, T}, ... T, TV, Ty Th)h

para algin T}, i =1...k
9. Marking a dialectical tree as undefeated: (M-ND) A dialectical wif can be
marked as undefeated if every immediate sublabel can be marked as defeated.

T*(A, T3,...,Tf,...,T;):h  TP(B;,...):q : VSTree(T*(A),TP)
TU(A, TP, ..., TP, ..., T)h

VT;,i=1...k
Ezample 5.4. Consider the labeled wifs in example 5.3. Then it holds that
I TP (AL T, (Az, T3 (As)). Ti (Ad) )0k

In order to derive this labeled wff, the following steps were followed:



a) Iy 737 (As)ils (by rule R7)
b) L'y T (As):~ok (by rule R7)
¢) I TP (A, TV (A3)) i~ f (from (a) by rule R8)

\‘

d) FthD (A1, TP (Ag, TV (A3)), TV (Ay)):0k. (from (b) and (c) by rule RS)

The previous marking procedure allows us to define the notions of justification
and warrant. Since reasoning is defeasible, a belief may be justified at one stage,
unjustified at a later stage, and so on. Warrant is a less transitory notion of justi-
fication, being understood as ”justification in the limit”. A warranted proposition
is one that eventually becomes justified and stays justified. As pointed out by John
Pollock [Pollock, 1995], justification and warrant are concepts closely related to each
other, but different. In our formalization we capture both concepts.

Definition 5.5 (Justification).
Let I" be an argumentative theory, such that I’ }\% TY:h. Then the (ground) literal
h will be justified, and the label TY :o will be called its justification.

Ezample 5.6. In example 5.4, we have that Flf\%’Y;U(A3):~ls. Hence ~ls is justified.

Warrant will be characterized in terms of the deductive closure of the inference
rules for computing justification.

DEFINICION 5.1 (Warrant). Let ri be the closure of I" under |~. Let S C r.
A literal h is warranted iff TY(A,...):h € S, and there is no S’ D S such that
TP(A,...):h. O

Ezample 5.7. In example 5.4, the labeled wif 7" (Ay, T5° (As, TV (A3)), TV (Aq)):0k
asserts that the argument A; for believing that the engine was working ok is ul-
timately defeated (after considering all arguments involved). Therefore A; is not a
warrant for ok. From this example it also follows that both the argument A, for
~ok and the argument Ajz for ~[s are warrants (since they are not defeated by any
other argument).

Definition 5.1 specifies declaratively how to compute warrant. Procedurally, war-
rant can be determined by means of a precedence relation between dialectical formu-
las. The basic idea is that new defeaters are added to a given atomic dialectical tree,
building a a sequence of dialectical formulas [ T,:h, Ty:h, ..., T\ :h ] until any addi-
tion of a new argument would imply violating the condition VSTree. The root node
of the last element of this sequence will be a warranted argument. This procedural
definition of warrant can be shown to be equivalent to the one in Definition 5.1. For
more details, the interested reader is referred to [Chesnevar, 2000].

6 Logical Properties in |~Arg. Semantics.®

Next we briefly mention some of the logical properties that have been studied for
h/hg. Let C(I') ={ q1,---,qk : Fk\zrgA:ql, ..., q } (that is, the consequences of all
generalized arguments that can be derived from I').

6 Proofs of the propositions in this section as well as an in-depth discussion of semantical issues are not
included for space limitations. The interested reader is referred to [Chesnievar, 2000].



The notion of generalized arguments satisfies superclassicality wrt provability in
logic programs. In other words, all conclusions that can be derived in a logic program
can also be derived wrt I'\Z;Tg

Proposition 6.1. (Superclassicality of h’wg wrt =) Let Th(I") be the conclusions

that follow from II(I"). The operator C(I") satisfies superclassicality, i.e. , Th(I") C
().

Note that h’wg does not satisfy monotony, since adding new information to I" can

invalidate old generalized arguments. The consequence relation |'\:hg does not satisfy
rational negation, nor rational monotonicity, defined as follows.

1. Rational Negation: if A~ z then either AU {z}p zor AU {—z}) 2.
2. Rational Monotonicity: If A~ z then AU {z}l~ 2, or A -z

Proposition 6.2. (Fuailure of Rational Negation and Rational Monotonicity in |'\:”g)
The operator C(I") does not satisfy rational negation, nor rational monotonicity.

Generalized arguments can be used as lemmas for building more complex argu-
ments. In other words, the property of cammulativity holds for the inference relation

e

Lemma 6.3 (Cummulativity in hg) Let I" be an argumentative theory, and
let oy and o be wffs in Lxr. Then Fhngl o implies that

I uJ {./41.'0[1} I’\ATQAQ.'O{Q ’lﬁ I l’\‘ ./42.'0[2

Arg

Many researchers (e.g. [Gabbay, 1996], [Makinson, 1989]) argue that any non-
monotonic consequence notion, although lacking the property of monotonicity, should
still satisfy other criteria. Others (e.g. [Prakken and Vreeswijk, 1999]) do not follow
that approach, in the sense that they think it is hard to find any criterion that
should really hold for any argumentation system.

In this respect, we contend that a LDS-based formalization of defeasible argu-
mentation can provide a useful tool for the study of emerging logical properties. As
proven in lemma 6.3, the consequence relation Pv satisfies cummulativity. Under
certain constraints, the same hold for warranted behefs A complete study of these
properties is still subject of research work.

Semantical considerations. Transformation properties

When looking for a semantical characterization for an LDS, one natural alternative
is to adopt Gabbay’s viewpoint, which involves basically to stay within the ‘realm
of logical systems’ (i.e., LDS with mechanisms), and to the extent that semantics
is needed, it is brought into the syntax. This can transparently be done in modal
logic, where the labels denote possible worlds, and the proof rules closely reflect
semantical evaluation rules. Gabbay also suggest a generalization of this approach.
The approach used by Modgil [Modgil, 1998] relies upon such a formalization, using
possible world semantics.



However, an interesting option consists in determining frames (or classes of dis-
tinguished models) corresponding to the different proof-theoretic notions in our
framework. A semantical account of justification and warrant has been provided
using this setting This work was initially started in [Simari and Loui, 1992]. Many
new issues (such as dialectical constraints, which emerged in later research work)
were not, considered at that time, and are now integrated in the resulting formaliza-
tion. Soundness and completeness results are provided, which relate the syntactic
LDS formalization with a semantical counterpart [Chesfevar, 2000].

The complexity of detetermining warrant is associated with the number of for-
mulas involved in an argumentative theory. Transformation properties provide a
way to reduce a given argumentative theory I' by repeated application of rewrit-
ing rules. The resulting residual theory is equivalent to I" [Chesnevar et al., 2000a].
These transformation rules are based on similar work done in the area of logic pro-
gramming, particularly concerning normal logic programs, where a complete simpli-
fication of a program can be achieved in order to read off its well-founded semantics.
In our analysis, we show that a complete simplification of an argumentative theory
cannot be achieved, although our results suggest that defeasible information cannot
be easily compressed or re-written.

7 Ongoing work

Dialectics [Rescher, 1977, Hegselmann, 1985] is one of the known processes to arrive
to rational beliefs. Dialectics refers to a form of disputation, in which a serializable
resource is distributed among two or more parties (usually two parties, proponent
and opponent). The serializable resource is typically search for arguments, or time for
presentation of arguments [Loui and Norman, 1992]. An important issue in dialecti-
cal argumentation concerns the role of protocols of dispute within an argument-based
framework. The question is whether there are rational principles governing the ex-
change of arguments and counterarguments in disputational dialogues, and if so,
how to formalize them [Prakken, 2000].

The importance of protocols was first pointed out by Loui [Loui, 1998], and
Prakken [Prakken, 2000] has also recently been concerned with them. Protocols
characterize the way a dialectical proof can be carried out. Unlike proof theories,
it does not always make sense to evaluate the outcome of a dispute with respect
to all possible arguments; sometimes only those arguments that have actually been
stated should be relevant (e.g. a legal procedure). Soundness and fairness can be de-
fined with respect to protocols; sound protocols always prove warranted arguments,
whereas fair protocols should allow a argument which is warranted to prevail over
others arguments in a dispute.

A partial characterization of a protocol has been provided within our formal-
ization. A partial order “C” on labelled wffs corresponding to dialectical trees was
defined. A sequence of dialectical formulas [ T;:h, Ty:h, ..., T;:h | such that T,:h C
T, :h, allows us to represent Prakken’s notion of dispute in our setting. A detailed
analysis of this issue is outside the scope of this paper.



8 Conclusions

Labeled Deductive Systems offer a powerful tool for formalizing different logical
frameworks. In this paper we have presented a formalization of an argumentative
system in terms of LDS. In the proposed setting, the notion of label allows to capture
the concept of argument as a set of wifs supporting a given proposition. On the other
hand, the concept of dialectical tree can be also captured by a complex label, defined
in terms of more simple ones. Such a complex label can be ‘marked’ in terms of its
sublabels, following the procedure initially suggested in [Simari et al., 1994].

It should be remarked that LDS is not a single logic, but a family of logics.
Thus, in our formalization, a condition such as VSTree can be used as a parameter
for characterizing different, alternative logics for defeasible argumentation within the
same logical framework. Having a formal system that models the process of defeasible
argumentation allows us to analyze different aspects associated with characterizing
argumentative frameworks (such as argumentation protocols and resource-bounded
reasoning). Researchin this direction is currently being pursued.
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