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1 Introduction and motivations

Defeasible reasoning based on different views of argumentation [19, 5, 15] has
proven to be a successful approach to formalizing the act of reasoning with in-
complete and potentially inconsistent information. Recent research (notably [1])
has shown that defeasible argumentation constitutes a confluence point for char-
acterizing traditional approaches to non-monotonic reasoning (such as Gelfond’s
extended logic programming and Reiter’s default logic). In this context, logic
programming (LP) has provided a useful setting for exploring both theoretical
and practical issues in defeasible argumentation. Dung’s work on argumenta-
tive semantics for logic programs [6] paved the way for other formalisms, most
of them based on different versions of extended logic programming (such as
Prakken’s [14], among others).

This paper reports some of the main results from two major research lines
that have been explored in our laboratory since 1994, continuing the research
work started in 1987 [18]. First, we will describe the most relevant features of
defeasible logic programming (DeLP) [8], a LP-based formalism for defeasible ar-
gumentation. Second, we will detail some aspects of LDSar [3], a formalization
for defeasible argumentation based on labelled deduction (LD) [7] which allows
the exploration of several logical properties of DeLP, as well as other related for-
malisms. Finally, we will present the main conclusions that have been obtained,
as well as a brief sketch of our ongoing research.

2 How we perceive argumentation

2.1 Knowledge representation and inference: argument structures
and defeat

A knowledge base (DeLP program) can be thought of as a pair (Π, ∆), where
Π and ∆ represent sets of non-defeasible and defeasible knowledge, respectively.



The set Π is assumed to be non-contradictory.1 This distinction is quite common
in many existing argumentative frameworks (such as Prakken & Sartor’s [15] and
Vreeswijk’s [20]), and it can be traced back to the original Simari-Loui formal-
ism [19] and the first ideas of nonmonotonic reasoning [16]. In DeLP two different
negations are allowed: strong negation “∼” for representing contradictory literals
and default negation “not” for representing incomplete information. The under-
lying representational language of DeLP consists of ground facts and two kinds
of ground rules: defeasible rules (l —< q1 , . . . qk ) and strict (non-defeasible) rules
(l ← q1 , . . . , qk ), where l is a ground literal, and q1, . . . , qk, represents a con-
junction of literals. Default negation may be used only in the body of defeasible
rules. The symbols “ —< ” and “ ← ” denote meta-relations between sets of
literals. DeLP rules are thus to be thought of as inference rules rather than rules
in the object language.

Our notion of argument is a variant of the original definition proposed in [19],
properly suited to a logic programming setting.

Definition 1 (Argument Structure). Let P = (Π, ∆) be a DeLP program.
A set A ⊆ ∆, is an argument structure for a literal h, denoted 〈A, h〉, if and
only if:
1. there exists a defeasible derivation for h from Π ∪ A.
2. Π ∪ A is non-contradictory.
3. A is minimal (there is no proper subset A′ of A such that A′ satisfies
conditions (1) and (2)).
An argument 〈A1, h1〉 is a sub-argument of another argument 〈A2, h2〉 if A1 ⊆
A2.

In the case of DeLP, the notion defeasible derivation is the usual derivation
used in logic programming, considering both strict and defeasible rules. Minimal-
ity imposes a kind of ‘Occam’s razor principle’ [19] on argument construction,
as any superset of an argument A can be proven to be ‘weaker’ than A itself
as far as possible attacking arguments are concerned. The non-contradiction re-
quirement forbids the use of defeasible rules in an argument A whenever Π ∪ A
entails two complementary literals p and p.

We assume the existence of a partial order “≤” on argument structures.
Hence, if 〈A1, h1〉 ≤ 〈A2, h2〉 we will say that 〈A2, h2〉 is preferred over 〈A1, h1〉.
For example, specificity [19] is typically used as a syntax-based preference cri-
terion among arguments, although any other partial order would also be valid
(see [8]).

Now we are ready to introduce the notion of defeater. Informally, 〈A1, h1〉
is a defeater for 〈A2, h2〉 if both argument structures are in contradiction and
〈A2, h2〉 is not preferred over 〈A1, h1〉. Formally,

1 We use the term non-contradictory instead of inconsistent to emphasize indepen-
dence of the underlying logical language. Contradiction arises when deriving two
complementary literals wrt some form of negation.



Definition 2 (Defeater).
Let 〈A1, h1〉 and 〈A2, h2〉 be two argument structures. 〈A1, h1〉 is a defeater for
〈A2, h2〉 at literal h iff:

(a) there exists a sub-argument 〈A, h〉 of 〈A2, h2〉 such that Π ∪ {h1, h} is a
contradictory set, and 〈A1, h1〉 is preferred over 〈A, h〉 (proper defeater), or

(b) there exists a sub-argument 〈A, h〉 of 〈A2, h2〉 such that Π ∪ {h1, h} is a
contradictory set, and 〈A1, h1〉 is not related to 〈A, h〉 (blocking defeater), or

(c) the extended literal “not h1” is in the body of a defeasible rule in 〈A2, h2〉.

2.2 Computing warrant through dialectical analysis

The dialectical analysis is carried out by using a tree-like structure called dialec-
tical tree (first introduced in [17]) which facilitates the analysis and implemen-
tation of defeat and reinstatement among arguments, as well as the definition
of “fallacy-checks” (such as detecting circular and/or contradictory argumen-
tation during the dialectical process). A dialectical tree rooted in an argument
〈A0, q0〉 is defined by ‘bundling’ together all possible acceptable argumenta-
tion lines starting in 〈A0, q0〉, i. e. sequences of arguments and defeaters which
are fallacy-free. A subsequent marking procedure allows the determination of
whether the original argument 〈A0, q0〉 is ultimately accepted or warranted.

An argumentation line λ = [ 〈A0, q0〉, 〈A1, q1〉, 〈A2, q2〉, . . . , 〈An, qn〉 . . . ]
can be thought of as an exchange of arguments between two parties, a propo-
nent and an opponent [17], such that each 〈Ai, qi〉 defeats the previous argument
〈Ai−1, qi−1〉 in the sequence. Dialectics imposes additional requirements on such
an argument exchange for it to be considered rationally acceptable. In such a
setting, fallacious reasoning (such as circular argumentation and falling into
self-contradiction) is to be avoided. This can be done by requiring that all ar-
gumentation lines be acceptable [17]. An acceptable argumentation line starting
with an argument 〈A0, q0〉 constitutes an exchange of arguments which can be
pursued until no more arguments can be introduced because of the aforemen-
tioned dialectical constraints.

Definition 3 (Acceptable argumentation line). Let P be a dlp, and let λ

= [〈A0, q0〉, 〈A1, q1〉, . . . , 〈An, qn〉, . . . ] be an argumentation line in P. Let
λ′ =[〈A0, q0〉, 〈A1, q1〉, . . . , 〈Ak, qk〉 ], be an initial segment of λ starting in
〈A0, q0〉. The sequence λ′ is an acceptable argumentation line in P iff it is the
longest subsequence in λ satisfying the following conditions:

1. The sets λ′
S and λ′

I are each non-contradictory sets of arguments wrt P.2

2. No argument 〈Aj , qj〉 in λ′ is a sub-argument of an earlier argument 〈Ai, qi〉
of λ′ (i < j).

2 Non-contradiction for a set of arguments is defined as follows: a set S =Sn

i=1
{〈Ai, qi〉} is contradictory wrt a DeLP program P iff Π ∪

Sn

i=1
Ai is contradic-

tory.



3. There is no subsequence of arguments [ 〈Ai−1, qi−1〉, 〈Ai, qi〉, 〈Ai+1, qi+1〉 ]
in λ′, such that 〈Ai, qi〉, is a blocking defeater for 〈Ai−1, qi−1〉 and 〈Ai+1, qi+1〉
is a blocking defeater for 〈Ai, qi〉.

The rationales for the conditions in Definition 3 are to be understood in a
dialectical setting [17]. Condition 1 disallows the use of contradictory information
on either side (proponent or opponent). Condition 2 eliminates the “circulus in
demonstrando” fallacy (circular reasoning). Finally, condition 3 enforces the use
of a stronger argument to defeat an argument which acts as a blocking defeater.

Definition 4 (Dialectical Tree). Let 〈A0, h0〉 be an argument structure from
a program P. A dialectical tree for 〈A0, h0〉, denoted T〈A0,h0〉, is obtained as
follows:

1. The root of the tree is labeled with 〈A0, h0〉.
2. Let N be a node of the tree labeled 〈An, hn〉, and [〈A0, h0〉, 〈A1, h1〉, . . . , 〈An, hn〉]

the sequence of labels of the path from the root to N . Let 〈B1, q1〉, 〈B2, q2〉,
. . . , 〈Bk, qk〉 be all the defeaters for 〈An, hn〉.
For each defeater 〈Bi, qi〉 (1 ≤ i ≤ k), such that the argumentation line
[〈A0, h0〉, . . . , 〈An, hn〉, 〈Bi, qi〉] is acceptable, then the node N has a child
Ni labeled 〈Bi, qi〉.
If there is no defeater 〈Bi, qi〉 that satisfies that condition, then N is a leaf.

Note that a dialectical tree is an and-or tree. Leaves can be marked as
undefeated nodes (U-nodes), as they have no defeaters. Every inner node is to
be marked as D-node iff it has at least one active defeater (U-node) as a child,
and as U-node otherwise.

Definition 5 (Warranted literals). Let A be an argument structure for a
literal h, and T ∗

〈A,h〉 its associated marked dialectical tree. The literal h is
warranted iff the root of T ∗

〈A,h〉 is a U-node.

Based on the notion of warrant, we will define a modal operator of belief “B”,
where “Bh” stands for “h is warranted”. The possible answers of an interpreter
of DeLP can be defined in terms of this operator. There are four possible answer
for a query h: (1) yes, if Bh; (2) no, if B ∼ h; (3) undecided, if ¬Bh and
¬B ∼ h; and (4) unknown, if h is not in the program’s signature.

3 Formalizing argumentation using labelled deduction

3.1 Motivations and fundamentals

The study of logical properties of defeasible argumentation, particularly those
related to the DeLP framework, motivated the development of LDSar [3], an
argumentation formalism based on the labelled deduction methodology [7].3 In

3 It must be remarked that the use of labelled deduction as a basis for formalizing an
argumentation framework was first explored in [11].



labelled deduction, the usual notion of formula is replaced by the notion of la-
belled formula, expressed as Label :f, where Label represents a label associated
with the wff f. A labelling language LLabel and knowledge-representation lan-
guage Lkr can be combined to provide a new, labelled language, in which labels
convey additional information also encoded at object-language level. Formulas
are labelled according to a family of deduction rules, and with agreed ways of
propagating labels via the application of these rules.

In LDSar, the language Lkr is the one of extended logic programming. Labels
extend this language by distinguishing defeasible and non-defeasible information.
A consequence relation

Àrg
propagates labels, implementing the SLD resolution

procedure along with a consistency check every time new defeasible informa-
tion is introduced in a proof. This information is collected into a support set,
containing all defeasible information needed to conclude a given formula. Thus,
arguments are modelled as labelled formulas A:h, where A stands for a set of
(ground) clauses, and h for an extended literal.

Given a knowledge base Γ the consequence relation
Àrg

allows the inference
of labelled formulas of the form argument :literal. Since arguments may be in
conflict, a new, extended consequence relationship

T̀
will be defined. Those wffs

derivable from Γ via
T̀

will correspond to dialectical trees. These new labelled
wffs will therefore have the form dialectical tree:conclusion.

3.2 Some logical properties. Equivalence results

LDSar provides a useful formal framework for studying logical properties of
defeasible argumentation in general, and of DeLP in particular. Equivalence re-
sults with other argumentative frameworks were also studied, particularly those
relating DeLP with other LP-based formalisms.

Cummulativity was proven to hold for argumentative formulae. This let us
think of a DeLP program as a knowledge base containing ‘atomic’ arguments
(facts and rules), which can be later on extended by incorporating new, more
complex arguments. This feature makes it easier to formalize dialectical data-
bases, a TMS-based approach to defeasible argumentation which is currently
being explored [2]. Cummulativity is proven not to hold for warranted conclu-
sions, following the intuitions suggested by Prakken & Vreeswijk [15].

Superclassicality was shown to hold for both argument construction and war-
rant wrt SLD resolution. In other words, if Thsld(Γ ) denotes the set of con-
clusions that can be obtained from Γ via SLD, then it holds that Carg(Γ ) ⊆
Thsld(Γ ) and Cwar(Γ ) ⊆ Thsld(Γ ), where Carg and Cwar stand for the con-
sequence operator for argument construction and warrant, respectively. This
implies, among other things, that the analysis of attack between arguments can
be focused on literals in defeasible rules. Analogously, right weakening is proven
to hold for both Carg and Cwar. This implies that (warranted) arguments with
a conclusion x are also (warranted) arguments for y whenever y ← x is present
as a strict rule.

Another interesting issue concerns the definition of variants for LDSar. Since
LDSar is a logical framework, its knowledge-encoding capabilities are deter-



mined by the underlying logical language, whereas the inference power is char-
acterized by its natural deduction rules. Adopting a different KR language or
modifying the existing inference rules will lead to different variants of LDSar.
Thus, for instance, adopting a full first-order language will lead to a logical
system with a behavior similar to the SL framework [19]. On the other hand,
restricting the KR language to Horn clauses will result in a formulation closer to
normal logic programming (NLP) under well-founded semantics.4 Figure 1 sum-
marizes some of these variants, and shows how they can be related to some exist-
ing argumentation frameworks, such as Simari-Loui’s [19], MTDR [17], DeLP [3]
and NLP (normal logic programming), conceptualized in an argumentative set-
ting as suggested in [1]. Two distinguished variants of DeLP deserved particular
attention, namely DeLPnot and DeLPneg (DeLP restricted to default and strict
negation, resp.). In [4], the relation between these variants of DeLP and normal
logic programming was explored. Different criteria under which both strict and
defeasible rules could be rewritten into a simpler but semantically equivalent
form were defined.

The notion of dialectical tree and acceptable argumentation lines proved to
be very useful for capturing different aspects of the process of argumentation.
It should be remarked that similar approaches have been recently tried in other
formalisms (see for example [13]). A formal analysis proved that dialectical trees
can be pruned (following the procedure introduced in [17]) without affecting the
marking procedure. An equivalence theorem between top-down and bottom-up
computation of dialectical trees was also shown to hold.
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Fig. 1. A taxonomy relating the expressive power of LDSar and different argumenta-
tion systems

4 A full discussion of different argumentative frameworks encompassed by LDSar can
be found in [3].



4 Conclusions. Ongoing work

As we have shown in this paper, DeLP provides an LP-based setting for defea-
sible argumentation that combines the well-known advantages of the logic pro-
graming paradigm (such as declarativity and implementability) together with
the dialectical considerations required to model argumentative processes. The
DeLP language incorporates the natural benefits of allowing both strong and
default negation, distinguishing at the same time between defeasible and non-
defeasible information by introducing defeasible and strict rules. Specificity was
adopted as the argument-comparison criterion, but it can be replaced by any
other partial order among arguments without changing the rest of framework.
Implementation issues deserved special consideration. In order to gain efficiency,
the language was implemented using an abstract machine defined and imple-
mented as an extension of the Warren Abstract Machine. Recent work showed
how to extend DeLP capabilities into a multiagent environment [9].

During the last decade, a ‘clash of intuitions’ has appeared within the argu-
mentation community [5, 15], where different, alternative approaches have been
explored. As we have briefly sketched in the second part of this paper, having a
logical formalism such as LDSar makes it easier to analyze, compare and relate
different features associated with existing argumentative frameworks, providing
at the same time a test-bed for studying other related issues (such as argumen-
tation protocols, resource-bounded reasoning, etc.). These aspects are directly
related to formalizing multiagent environments, in which argumentation plays
a major role when modelling the communicative and reasoning abilities of the
agents involved [12]. Research in this direction is currently being pursued.
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