
Computing Generalized Specificity

Frieder Stolzenburg, ���������
	���
�����������������	��
�����
	 *

Alejandro J. García, �����
� ��!�"���#�!�$	����%� ��& **

Carlos I. Chesñevar, '�� �
� ��!�"���#�!�$	����%� ��& **

Guillermo R. Simari, ��& ��
� ��!�"���#�!�$	����%� ��& **

* Univ. Koblenz-Landau, Universitätsstr. 1, 56070 Koblenz, GERMANY

** Univ. Nacional del Sur, Av. Alem 1253, (B8000CPB) Bahía Blanca, ARGENTINA

ABSTRACT. Most formalisms for representing common-sense knowledge allow incomplete and
potentially inconsistent information. When strong negation is also allowed, contradictory con-
clusions can arise. A criterion for deciding between them is needed. The aim of this paper is to
investigate an inherent and autonomous comparison criterion, based on specificity as defined in
[POO 85, SIM 92]. In contrast to other approaches, we consider not only defeasible, but also
strict knowledge. Our criterion is context-sensitive, i. e., preference among defeasible rules is
determined dynamically during the dialectical analysis.
We show how specificity can be defined in terms of two different approaches: activation sets
and derivation trees. This allows us to get a syntactic criterion that can be implemented in a
computationally attractive way. The resulting definitions may be applied in general rule-based
formalisms. We present theorems linking both characterizations. Finally we discuss other frame-
works for defeasible reasoning in which preference handling is considered explicitly.

RÉSUMÉ. A définir par la commande (*)�+�,.-0/�+�1�2323254
KEYWORDS: defeasible reasoning; knowledge representation; logic programming; non-
monotonic reasoning.

MOTS-CLÉS : A définir par la commande (6/�708�,39;:;+�,;1�2323254

1. Introduction

1.1. Background

Formalisms for representing common-sense knowledge usually handle incom-
plete and potentially inconsistent information. In such formalisms, contradictory con-
clusions can arise, which prompts for a criterion for deciding between them. Sev-
eral extensions of logic programming (LP), default reasoning systems, defeasible

Journal of Applied Non-Classical Logics. Volume 12 - n◦ 1/2002, pages 1 à 27

2 Journal of Applied Non-Classical Logics. Volume 12 - n◦ 1/2002

logics, and defeasible argumentation formalisms consider priorities over competing
rules [ANT 00, COV 88, DIM 95, GEL 97, KAK 94, WAN 97], in order to decide be-
tween contradictory conclusions. However, these priorities must be supplied by the
programmer, establishing explicitly relations between rules.

Another problem, pointed out by Dung and Son in [DUN 96], is that several for-
malisms “enforce” the principle of reasoning with specificity by first determining a
set of priority orders between default rules of a set D, using the information given by
a domain knowledge K . The problem is that the resulting semantics is rather weak,
in the sense that priorities are defined independently of the set E of evidence. There-
fore, if the set E changes, the previous fixed priorities could not behave as expected.
On the contrary, this evidence-sensitivity can be naturally captured in argumentation-
theoretic approaches as shown in [DUN 96, GAR 98, SIM 92] and also here.

In [DUN 96], a transformation from the proposed underlying language into ex-
tended logic programming [GEL 90a] is given. However, this transformation encodes
the specificity criterion with program rules, forcing re-encoding in the presence of
changes in the program. In our approach specificity will be inferred directly from the
program rules without any intermediate step. Our approach also takes into considera-
tion the background knowledge B that was assumed empty in [DUN 96]. Dealing with
background knowledge (i. e. adding strict rules) is not a trivial matter, because then
we have to take into account also the conclusions that are implied by this background
knowledge, which has to be considered in the dialectical process when comparing
arguments (see also Section 3.2).

1.2. Motivation

The aim of this paper is to investigate beyond explicit comparison between rules,
looking forward for a more autonomous comparison criterion, based on specificity
as defined in [POO 85, SIM 92]. In contrast to other approaches, we consider not
only defeasible, but also strict knowledge. In our setting, arguments will be basically
defeasible proofs involving both defeasible and strict knowledge, which may support
contradictory conclusions, so that a comparison criterion is needed to decide between
them. Our criterion for comparing arguments, namely specificity, is context-sensitive.
This means that preference among defeasible rules is determined dynamically during
the dialectical analysis (see also the examples in Section 4.1).

We show how this criterion can be redefined in terms of two different approaches:
activation sets and derivation trees. This allows us to get a syntactic criterion that can
be implemented in a computationally attractive way. The resulting definitions may be
applied in arbitrary generic rule-based formalisms. As a basis of our presentation we
will use Defeasible Logic Programming (DeLP) [GAR 97, GAR 98], where a com-
parison for arguments based on specificity is given. In DeLP (as in many defeasible
logics and defeasible argumentation formalisms), there is a distinction between strict

Computing Generalized Specificity 3

rules and defeasible rules. Specificity in DeLP takes into consideration both kinds of
rules.

Originally, this research has been motivated by the programming of autonomous
agents for the RoboCup [MUR 01]. Since agents must be able to cope with contra-
dictory knowledge, defeasible reasoning should be employed for agent programming.
Defeasible logic programming is able to extend the logic-based approach for multia-
gent systems as presented in [MUR 01].

This paper is organized as follows. First, in Section 2 we introduce the fundamen-
tals of DeLP. In Section 3, a definition of generalized specificity will be given, and
two computationally attractive ways of comparing arguments by means of specificity
in a logic programming framework will be developed. Finally, in Section 4, we discuss
other frameworks for defeasible reasoning in which preference handling is considered
explicitly, contrasting them with our approach. We will end with concluding remarks
in Section 5.

2. Defeasible Logic Programming

2.1. Defeasible Programs

The DeLP language [GAR 97, GAR 98] is defined in terms of two disjoint sets
of rules: a set of strict rules for representing strict (sound) knowledge, and a set of
defeasible rules for representing tentative information. Rules will be defined using
literals. A literal L is an atom p or a negated atom∼p, where the symbol∼ represents
strong negation. We define this formally as follows:

Definition 2.1 (Strict rule) A strict rule is an ordered pair, conveniently denoted
Head← Body, whose first member, Head, is a literal, and whose second member,
Body, is a finite set of literals. A strict rule with the head L0 and body {L1, . . . , Ln}
can also be written as L0 ← L1, . . . , Ln. As usual, if the body is empty, then a strict
rule becomes L← true (or simply L) and it is called a fact.

The syntax of strict rules corresponds to basic rules in logic program-
ming [LIF 96], but we call them “strict” in order to emphasize the difference to the
“defeasible” ones (see below). There is no contraposition for rules, i. e., a← b is not
equivalent to ∼b← ∼a. Defeasible rules add a new representational capability for
expressing a weaker link between the head and the body in a rule [SIM 92].

Definition 2.2 (Defeasible rule) A defeasible rule is an ordered pair, conveniently
denoted Head —<Body, whose first member, Head, is a literal, and whose second
member, Body, is a finite and non-empty set of literals. A defeasible rule with head
L0 and body {L1, . . . , Ln} can also be written as L0 —<L1, . . . , Ln where n ≥ 1.

4 Journal of Applied Non-Classical Logics. Volume 12 - n◦ 1/2002

A defeasible rule with an empty body (i. e. n = 0 in this case) is called a presump-
tion [GAR 97, GAR 00]. Technically, it is possible to introduce presumptions into a
framework for defeasible argumentation with specificity. However, this might lead to
counterintuitive results when comparing arguments by the definition of specificity we
adopt in this paper (see Definition 3.1). For instance, two arguments solely based on
presumptions are not comparable wrt. specificity according to Definition 3.1, although
they should, if the set of presumptions used in one argument are a proper subset of the
set of presumptions used in the other argument. Therefore we will exclude presump-
tions from our object language. For an in-depth analysis of presumptions with respect
to DeLP the reader is referred to [GAR 00].

Syntactically, the symbol “—< ” is all that distinguishes a defeasible rule from a
strict one. Pragmatically, a defeasible rule is used to represent defeasible knowledge,
i. e. tentative information that may be used if nothing could be posed against it.

Definition 2.3 (Defeasible logic program) A defeasible logic program (DLP) is a fi-
nite set of strict and defeasible rules where literals may have variable or constant
parameters. We do not consider the case with general functions here. If P is a DLP,
we will distinguish the subset Π of strict rules in P , and the subset ∆ of defeasible
rules in P . When required, we will denote P as (Π, ∆).

Example 2.4 The following is a DLP where strict and defeasible rules have been sep-
arated for the convenience of presentation. It models a fragment of the soccer domain.
In the following, predicate and constant symbols (e. g. eager and diego, respectively)
begin with lower-case letters, while variable symbols (e. g. X) begin with capital let-
ters as in Prolog programs.

∆ Π
kick(X) —<player(X) player(X)← libero(X)
∼kick(X) —< libero(X) player(X)← goalie(X)
kick(X) —< libero(X), eager(X) ∼kick(X)← goalie(X)

eager(diego)
libero(diego)
goalie(oli)

Nute’s defeasible logic [COV 88, NUT 94], recent extensions of defeasible
logic [ANT 00, MAH 98] and some defeasible argumentation formalisms [HOR 94,
PRA 97, VRE 97] also make use of defeasible and strict rules for representing knowl-
edge. However, in most of these formalisms a priority relation among rules must be
explicitly given with the program in order to handle contradictory information. In
DeLP, an argumentation formalism for deciding between contradictory goals is used.

Computing Generalized Specificity 5

2.2. Defeasible Derivations

A defeasible derivation for a literal h from a DLP P is a finite set of strict and defea-
sible rules, obtained like an SLD-derivation, as defined in [LLO 87], but considering
the negation symbol “∼” as part of the predicate name and not taking into considera-
tion the type of the rule. Since we do not need the notion of SLD-derivation explicitly
in this context, we refer the reader to [LLO 87] for more details. Nevertheless, an
SLD-derivation can be represented by an and-tree, and this is defined implicitly in our
next definition.

Definition 2.5 (Defeasible derivation tree) Let a DLP P and a literal h be given. A
defeasible derivation tree T for h from P , is a finite, rooted tree (strictly speaking,
an and-tree), where all nodes are labeled with literals, satisfying the following condi-
tions:

1) The root node of T is labeled with (a ground instance of) h.

2) For each node N in T that is labeled with the literal L, there is a strict or
defeasible rule with head L0 and body {L1, . . . , Lk} in P , such that L = L0σ for
some ground variable substitution σ, and the node N has exactly k children nodes,
which are labeled with L1σ, . . . , Lkσ, respectively.

If a defeasible derivation for h fromP exists via some derivation tree T (as defined
in Definition 2.5), then we will denote this by P `T h or simply P ` h. Our notion of
defeasible derivation tree will be used for the reformulation of specificity in Section 3.

Example 2.6 Consider the DLP of Example 2.4. The literal ∼kick(oli) has a defea-
sible derivation with the instantiated strict rule and the fact in

{

∼kick(oli)← goalie(oli)
goalie(oli)

}

,

and the literal kick(oli) has a defeasible derivation with






kick(oli) —<player(oli)
player(oli)← goalie(oli)
goalie(oli)







.

Observe that the literal ∼kick(diego) has the defeasible derivation:
{

∼kick(diego) —< libero(diego)
libero(diego)

}

, [1]

whereas kick(diego) has two defeasible derivations:






kick(diego) —<player(diego)
player(diego)← libero(diego)

libero(diego)







[2]

6 Journal of Applied Non-Classical Logics. Volume 12 - n◦ 1/2002

and







kick(diego) —< libero(diego), eager(diego)
libero(diego)
eager(diego)







. [3]

Figure 1 shows the corresponding derivation trees of the last three defeasible
derivations. In the derivation trees, simple lines denote applications of defeasible
rules, while arrows will denote applications of strict rules.

(1) ∼kick(diego) (2) kick(diego) (3) kick(diego)
| | � �

libero(diego) player(diego) libero(diego) eager(diego)
↑

libero(diego)

Figure 1. Derivation trees for Example 2.6.

Given the DLP of Example 2.4, in Example 2.6 we have just shown that it is pos-
sible to have defeasible derivations for two contradictory literals. Thus, a DLP may
represent contradictory information. A defeasible logic program P is contradictory
(written P ` ⊥) iff it is possible to defeasibly derive from P a pair of complementary
literals wrt. strong negation, i. e. P ` p and P ` ∼p for some atom p. We will assume
that in every DLP P the set Π is non-contradictory. Otherwise problems as in extended
logic programming will happen, and the corresponding analysis of the consequences
has been done elsewhere [ALF 96, GEL 90a].

2.3. Arguments

The central notion of the DeLP formalism is the notion of an argument [SIM 92].
Informally, an argument is a minimal and non-contradictory set of rules used to derive
a conclusion. In DeLP, answers to queries will be supported by an argument. The
formal definition follows.

Definition 2.7 (Argument) Let h be a literal andP = (Π, ∆) be a DLP. An argument
A for a literal h, also denoted 〈A, h〉, is a subset of (ground) instances of defeasible
rules of ∆, such that:

1) there exists a defeasible derivation for h from Π ∪ A,

2) Π ∪ A is non-contradictory, and

3) A is minimal wrt. set inclusion (i. e., there is no A′ ⊂ A such that A′ satisfies
condition 1).

Computing Generalized Specificity 7

The literal h will also be called the conclusion supported byA. An argument 〈B, q〉
is a subargument of 〈A, h〉 iff B ⊆ A. Note that strict rules are not part of an argu-
ment. Observe also that condition 2 of the previous definition prevents the occurrence
of “self-defeating” arguments [POL 91].

Example 2.8 Using the DLP of Example 2.4, the literal ∼kick(diego) has the argu-
ment

A1 =
{

∼kick(diego) —< libero(diego)
}

and the literal kick(diego) has two arguments:

A2 =
{

kick(diego) —<player(diego)
}

and

A3 =
{

kick(diego) —< libero(diego), eager(diego)
}

The literal ∼kick(oli) has a derivation formed only by strict rules, so
A = ∅ is an argument for ∼kick(oli). Observe that although the set B =
{kick(oli) —<player(oli), goalie(oli)} is a defeasible derivation for kick(oli) (Ex-
ample 2.6), there is no argument for this literal because Π ∪ B is contradictory.

Given an argument A for a literal q, other arguments that contradict A (called
rebuttals or counterarguments) could exist. We say that 〈A1, h1〉 counterargues
〈A2, h2〉 at a literal h iff there exists a subargument 〈A, h〉 of 〈A2, h2〉 such that
the set Π ∪ {h1, h} is contradictory. Therefore, a comparison criterion among argu-
ments is needed. One will be introduced in the next section: generalized specificity.
Based on such criterion, the following notion can be introduced.

Definition 2.9 (Defeater [SIM 94]) An argument 〈A1, h1〉 defeats 〈A2, h2〉 at literal
h iff there exists a subargument 〈A, h〉 of 〈A2, h2〉 such that 〈A1, h1〉 counterargues
〈A2, h2〉 at h, and one of the following conditions hold:

1) 〈A1, h1〉 is “better” (wrt. given preference criterion) than 〈A, h〉; then
〈A1, h1〉 is a proper defeater of 〈A2, h2〉; or

2) 〈A1, h1〉 is unrelated by the given preference order to 〈A, h〉; then 〈A1, h1〉 is
a blocking defeater of 〈A2, h2〉.

It is interesting to note that an argument that does not involve defeasible rules
cannot be defeated. To understand why, assume that A2 = ∅ is an argument for h2

defeated by A1 for h1. Since A2 = ∅, the only existing subarguments of A2 are also
empty arguments 〈∅, q〉 (i. e. Π ` q). Therefore A1 counterarguesA2 at some q, i. e.
Π ∪ {h1, q} ` ⊥. Since Π ` q, it follows that Π ∪ {h1} ` ⊥. But this implies that
A1 does not satisfy condition 2 of Definition 2.7 (contradiction). Note that A1 must
be non-empty, because otherwise Π itself would be contradictory.

8 Journal of Applied Non-Classical Logics. Volume 12 - n◦ 1/2002

In DeLP, a literal q will be considered as warranted (or ultimately accepted), if
the supporting argument for it is ultimately not defeated. In order to answer the ques-
tion whetherA is a non-defeated argument, counterarguments that could be defeaters
for A are considered. Since defeaters are arguments, there may exist defeaters for the
defeaters, and so on. In DeLP a complete dialectical analysis is performed construct-
ing a tree of arguments, called dialectical tree, where every node (except the root)
is a defeater for its father. In the rest of the paper, we will focus on how conflicting
arguments are to be compared, i. e. the relationship between an argument and a de-
feater. The reader interested in details on the whole dialectical process is referred to
[GAR 97, GAR 98, SIM 94].

3. An Inherent Criterion for Comparing Arguments

3.1. Specificity

We will formally define a particular criterion called generalized specificity which
allows to discriminate between two conflicting arguments. The next definition charac-
terizes the specificity criterion, defined first in [LOU 87, POO 85] and extended later
to be used in the defeasible argumentation formalism of [SIM 94, SIM 92]. Here, it
is adapted to fit in the DeLP framework. Intuitively, this notion of specificity favors
two aspects in an argument: it prefers an argument with greater information content or
with less use of defeasible information. In other words, an argument will be deemed
better than another if it is more precise or more concise.

Definition 3.1 (Generalized specificity) Let P = (Π, ∆) be a DLP, ΠG be the set of
all strict rules in Π which are not facts, and F be the set of all literals that have a
defeasible derivation from P . Then, 〈A1, h1〉 is more specific than 〈A2, h2〉 (written
〈A1, h1〉 � 〈A2, h2〉) iff for all H ⊆ F it holds:

ΠG ∪H ∪A1 ` h1 and ΠG ∪H 0 h1 imply ΠG ∪H ∪A2 ` h2.

According to [POO 85], we define: 〈A1, h1〉 is strictly more specific than 〈A2, h2〉
(written 〈A1, h1〉 � 〈A2, h2〉) iff 〈A1, h1〉 � 〈A2, h2〉 and 〈A2, h2〉 � 〈A1, h1〉. This
means,

1) for all sets H ⊆ F it holds that, if ΠG ∪H ∪A1 ` h1 and ΠG ∪H 0 h1, then
ΠG ∪H ∪A2 ` h2, and

2) there exists a set H ′ ⊆ F such that ΠG ∪H ′ ∪ A2 ` h2 and ΠG ∪H ′ 0 h2,
and ΠG ∪H ∪ A1 0 h1.

In the definition above the set ΠG does not contain facts, so the condition ΠG ∪
H ∪ A1 ` h1 will hold only with some particular non-empty set H . Remember that
we do not consider presumptions in this context. We say that H activates A1. The
expression ΠG ∪ H 0 h1 is called the non-triviality condition, because it stresses

Computing Generalized Specificity 9

the need for use of the set A1 for deriving h1. Hence, Definition 3.1 may be read as:
〈A1, h1〉 is more specific than 〈A2, h2〉 iff for each set H that non-trivially activates
A1, the same set H activatesA2.

Continuing with Example 2.8, argument 〈A1,∼kick(diego)〉 is strictly more
specific than 〈A2, kick(diego)〉 (see below), because 〈A1,∼kick(diego)〉 does not
use the strict rule player(X)← libero(X) and hence is more direct. Observe that
condition 1 in Definition 3.1 holds: every set H that activates 〈A1,∼kick(diego)〉
also activates 〈A2, kick(diego)〉. However, the set H ′ = {player(diego)} activates
〈A2, kick(diego)〉, but does not activate 〈A1,∼kick(diego)〉.

A1 =
{

∼kick(diego) —< libero(diego)
}

A2 =
{

kick(diego) —<player(diego)
}

On the other hand, the argument 〈A3, kick(diego)〉 (see below) will be regarded as
strictly more specific than 〈A1,∼kick(diego)〉, because 〈A3, kick(diego)〉 is based
on more information (libero and eager). Again, the condition holds and the set
H ′′ = {libero(diego)} is enough to activate 〈A1,∼kick(diego)〉 but does not ac-
tivate 〈A3, kick(diego)〉.

A3 =
{

kick(diego) —< libero(diego), eager(diego)
}

Thus, in summary we have 〈A3, kick(diego)〉 � 〈A1,∼kick(diego)〉 �
〈A2, kick(diego)〉. We also have 〈A3, kick(diego)〉 � 〈A2, kick(diego)〉. This
means, in principle, we can compare also arguments with non-contradictory (even
identical) conclusions wrt. (generalized) specificity. Specificity is a comparison cri-
terion that is independent of the notion of counterargument or defeat. Nevertheless,
in the DeLP framework comparing arguments is triggered only when contradictory
conclusions are arrived (see Definition 2.9).

The following example shows why comparing only a pair of rules instead of com-
plete arguments may sometimes be unsatisfactory. Consider the following program:















s(X)← q(X)
q(a)
p(X) —<q(X)
∼p(X) —<q(X), s(X)















(r1)
(r2)

The rule r2 = ∼p(X) —<q(X), s(X) is using more information than r1 =
p(X) —<q(X). Thus, in a system with priorities over rules such as [COV 88, NUT 94],
it is expected to have that r2 is preferred to r1 (written r2 > r1). Therefore, in such
a system the conclusion ∼p(a) will be preferred over p(a). But in this case, it is not
true that∼p(a) is using more information, because the rule s(X)← q(X) establishes

10 Journal of Applied Non-Classical Logics. Volume 12 - n◦ 1/2002

a strict connection between s(X) and q(X) (every q(X) is an s(X)). In DeLP, the ar-
gumentA = {(∼p(a) —<q(a), s(a))}1 for∼p(a) is not strictly more specific than the
argument B = {p(a) —<q(a)} for p(a), and vice versa. However, it holds 〈A,∼p(a)〉
is more specific than 〈B, p(a)〉, and vice versa.

In some systems [ANT 00, MAH 98] the rules r1 and r2 can be left unrelated wrt.
superiority, and then achieve the desired result. But note that, if the rule s(X)← q(X)
is replaced with the fact s(a) (i. e., there is no longer a connection between s(X) and
q(X)), then using the generalized specificity notion (Definition 3.1), the argumentA
will be strictly more specific than B. However, in a system with fixed priorities over
rules this automatic change in the behavior of the system is not possible. The priority
(or superiority) relation has to be changed to produce the expected result.

3.2. Arguments and Pruning

The following example reveals that in Definition 3.1—and hence also in [POO 85,
SIM 92]—we cannot restrict our attention to derivations which only make use of the
defeasible rules in the given arguments. Therefore, we will introduce the concept of
pruning in Definition 3.3, in order to establish equivalence between the original def-
inition of specificity (Definition 3.1) and the new characterizations of specificity by
activation sets as in Section 3.3 or by path sets as in Section 3.4.

From a computational point of view, pruning complicates the procedure for com-
puting specificity. But the reason for this is that we consider a very general setting in
this paper, because we admit

1) more than one antecedent in rules, i. e. bodies containing more than one (possi-
bly negative) literal, and

2) (posssibly) non-empty sets of background knowledge, i. e. strict rules, not only
facts.

In the literature, often restricted cases are considered only: antecedents are always
singletons in [GEL 90b], no background knowledge is allowed in [DUN 96], and both
restrictions are present in [BEN 97]. Since we consider the general case here, Exam-
ple 3.2 can be formulated. It shows that for computing specificity we cannot concen-
trate on derivations using the rules of the given argument only. If we do this, then
things will become computationally simpler. Therefore, in the following Section 3.3
we will also introduce an alternative definition of specificity that will fix the problem
shown in the Example 3.2.

1. We use parentheses just for improving the readability of the set of rules.

Computing Generalized Specificity 11

Example 3.2 Let us consider the following program:























































x —<a, b, c
a —<d
b —<e
∼x —<a, b
c
d
e
x← a, f
f —<e























































From this program, the arguments 〈A, x〉 and 〈B,∼x〉 with

A = {(x —<a, b, c), (a —<d), (b —<e)}

and

B = {(∼x —<a, b), (a —<d), (b —<e)}

can be obtained.

By Definition 3.1, it holds that 〈A, x〉 is not more specific than 〈B,∼x〉, since the
strict rule x← a, f together with A and H = {d, f} non-trivially activate x (because
the defeasible rule (a —<d) ∈ A can be used), but ΠG together with B and H = {d, f}
do not activate∼x. Figure 2 shows derivation trees for the arguments 〈A, x〉, 〈B,∼x〉
and in addition 〈C, x〉 (in this order) where:

C = {(a —<d), (f —<e)}

Observe that for the comparison of the arguments 〈A, x〉 and 〈B,∼x〉 according to
Definition 3.1, a derivation which uses another argument set C has to be taken into
consideration, making the activation set {d, f} possible. This derivation is shown in
Figure 2 (c). Here (and also in the sequel), dotted lines lead to parts of the derivation
tree which must not be considered when comparing the arguments A and B. We ob-
tain these parts of derivation trees by pruning, which we define formally in our next
definition.

(a) x (b) ∼x (c) x
� | � � � ↗ ↖
a b c a b a f

| | | | |
...

d e d e d e

Figure 2. Derivation trees for Example 3.2.

12 Journal of Applied Non-Classical Logics. Volume 12 - n◦ 1/2002

Definition 3.3 (Pruned derivation trees) Let 〈A, h〉 be an argument in a program
P = Π ∪ ∆. Let T be a defeasible derivation tree for h in P , i. e. Π ∪∆ `T h. We
define a derivation tree pruned wrt. the argument 〈A, h〉, denoted T〈A,h〉, as the tree
obtained from T by deleting all nodes in T which occur below nodes labeled with
head literals of defeasible rules r /∈ A (or instances thereof).

In order to illustrate Definition 3.3, let us revisit Example 2.4 and Figure 1 (3)
again. The derivation tree T in Figure 1 (3) makes only use of the rule r =
(kick(diego) —< libero(diego), eager(diego)). Thus, T is already pruned wrt. the ar-
gumentA3 = {r}. If we prune T wrt.A2 = {kick(diego) —<player(diego)}, which
is also an argument for h = kick(diego), then all nodes below the root have to be
deleted, because r /∈ A2. Hence, T 〈A2,h〉 simply consists of one node which is la-
beled with h. This pruned tree will not be considered when comparing arguments,
because it does not involve any defeasible rule. But things are not always that simple
(see Example 3.2).

3.3. Characterization by Activation Sets

Definition 3.1 suggests to test all subsets H ⊆ F . Hence, ifF contains n elements,
there are 2n sets to be considered. Besides the exponential explosion problem, this
definition might be considering sets of literals that are unrelated to the arguments
being compared. In addition, computing the set F is a problem on its own. In this
section, we introduce a way of avoiding these problems, which will be continued in
the next section.

Definition 3.4 (Argument completion: first version) Let P = (Π, ∆) be a DLP. A
completion of an argumentA for h, denotedA, is the set of defeasible and strict rules
without facts in ΠG ∪ A, which are used in a derivation tree T for h that is pruned
wrt. 〈A, h〉.

Note that for a particular argument 〈A, h〉, there are (possibly) many alternative
completions (see Definitions 3.9 and 3.10). In Definition 3.4, the notion of argument
completion depends on the notion of pruning (Definition 3.3). But pruning is cer-
tainly an expensive operation, because we cannot restrict our attention to derivations
which only make use of the defeasible rules in the given arguments only. We must take
into consideration also related (pruned) arguments. Therefore, we propose the follow-
ing alternative definition of argument completion that, from a computational point of
view, simplifies and hence improves the first one. This definition is also used in the
implementation of the DLP system (described in [GAR 97]).

Definition 3.5 (Argument completion: alternative version) Let P be a DLP, and let
〈A, h〉 be an argument in P . Let T be a derivation tree for h that does not make use
of any defeasible rule r /∈ A. Then a completion of 〈A, h〉 is the set of defeasible and
strict rules (without facts) in ΠG ∪ A which are used in T .

Computing Generalized Specificity 13

Example 3.6 Let us consider the following program:






































h← a
a —<b, c
b← d
b —<e
d
e
c







































For this program, we have the argument 〈A, h〉 withA = {a —<b, c}. One possible
argument completion for 〈A, h〉 is {(h← a), (a —<b, c), (b← d)} according to both
definitions of completion. But there is also another derivation for h making use of
the rules in {h← a, a —<b, c, b —<e}. Since the last defeasible rule in this set does
not belong to the original argument A, another argument completion (according to
Definition 3.4) after pruning, i. e. deleting this rule, is A = {h← a, a—<b, c}.

Note that an argument completion A does not contain the facts used in the con-
struction of the defeasible tree. The reason for that will become clear later. The set
of ground literals of A, denoted Lit(A), will be the set of all ground literals that oc-
cur in the body or head of every rule in A. Considering Example 3.6, it follows that
Lit(A) = {a, b, c, d, h}.

Definition 3.7 (Activation set) Let A be a completed argument, and Lit(A) the cor-
responding set of literals. A set U ⊆ Lit(A) is an activation set for A, if U ∪ A ` h,
and U is minimal with respect to set inclusion (i. e., @U ′ ⊂ U such that U ′ ∪ A ` h).
We will call Act-sets(A) the set of all activation sets for A.

Definition 3.8 (Non-trivial activation set) Let A be a completed argument, and
Lit(A) the corresponding set of literals. A set U ⊆ Lit(A) is called a non-trivial
activation set for A, if U is an activation set for A and U ∪ ΠG 0 h. We will call
NTAct-sets(A) the set of all the non-trivial activation sets forA.

Figure 3 shows an algorithm to compute all non-trivial activation sets for a com-
pleted argumentA for h. In order to avoid trivial activation sets we only check whether
a defeasible rule has been used. Note that the first activation set for A is h itself, and
it is also a trivial one. As can be seen from the algorithm, the set of activation sets
of an argument is easy to compute, just parsing the completed argument once. Speci-
ficity can thus be defined in a form such that we only need to consider the non-trivial
activation sets.

Definition 3.9 (Specificity revisited: preliminary version) Let 〈A1, h1〉 and
〈A2, h2〉 be two arguments, and A1 and A2 be completed arguments for A1 and A2

respectively. We say that 〈A1, h1〉 is strictly more specific than 〈A2, h2〉 iff

14 Journal of Applied Non-Classical Logics. Volume 12 - n◦ 1/2002

Input: a completed argumentA for h.
Output: NTAct-sets(A)

1) A stack S is initialized with the pair ({h}, trivial).

2) NTAct-sets(A) is initialized empty.

3) Repeat until S is empty:

a) Select the first pair (N ,type) in S and remove it from the stack.

b) If type is non-trivial then add N to NTAct-sets(A).

c) The element N will be formed by a set of literals l1, . . . , lk. For each literal
li ∈ N that is a head of a rule r in A, with no empty body, create a new activation set
Ni replacing li with the literals in the body of r. The type of Ni is trivial only if the
type of N is trivial and r is a strict rule. Otherwise the type of Ni is non-trivial. Thus,
for every literal li in N a new activation set can be created.

d) The new activation sets Ni, that were not previously expanded, are added to
the top of S.

4) Return NTAct-sets(A)

Figure 3. Computing non-trivial activation sets.

1) for all sets U ∈ NTAct-sets(A) it holds ΠG ∪ U ∪ A2 ` h2, and

2) there exists a set U ′ ∈ NTAct-sets(B) such that ΠG ∪ U ′ ∪A1 0 h1.

In general, there is no unique A for a given argument A for a literal h, since dif-
ferent rules in ΠG can be used to prove the body literals of defeasible rules in A.
Nevertheless, the difference between two argument completionsA1 andA2 for an ar-
gumentA lies only in the used strict rules for the defeasible derivation. Definition 3.9
is equivalent to Definition 3.1 only if there is a unique completion for each argument.
However, it can be improved in terms of the sets defined below which consider every
possible completion for an argument. In the following, ArgComp(A) denotes the set
of all argument completions of A. We define:

Act-sets(A) =
⋃

A∈ArgComp(A)

Act-sets(A)

NTAct-sets(A) =
⋃

A∈ArgComp(A)

NTAct-sets(A)

Definition 3.10 (Specificity revisited: final version) Let 〈A1, h1〉 and 〈A2, h2〉 be
two arguments. We say that 〈A1, h1〉 is strictly more specific than 〈A2, h2〉 (written
〈A1, h1〉 = 〈A2, h2〉 in this case) iff

1) for all sets U ∈ NTAct-sets(A1) it holds ΠG ∪ U ∪ A2 ` h2, and

2) there exists a set U ′ ∈ NTAct-sets(A2) such that ΠG ∪ U ′ ∪ A1 0 h1.

Computing Generalized Specificity 15

Let us come back to Example 3.2. According to Definition 3.10 with the alternative
definition of argument completion (Definition 3.5), i. e. without taking derivations into
account which use defeasible rules r /∈ A, we have that 〈A, x〉 is strictly more specific
than 〈B,∼x〉, since {d, f} is not considered as an activation set for 〈A, x〉 (because
f does not occur in the derivation which uses only the defeasible rules from A). This
means that 〈A, x〉 is more specific than 〈B,∼x〉. But 〈B,∼x〉 is not more specific than
〈A, x〉, because {a, b} non-trivially activates ∼x, but not x.

However, according to Definition 3.10 with the original version of argument
completion (Definition 3.4), it turns out that 〈A, x〉 is not strictly more specific
than 〈B,∼x〉. The problem is that there are two arguments for x, namely A and
C = {(a —<d), (f —<e)}, which makes the activation set {d, f} possible. We come to
the same conclusion when applying Definition 3.1. In fact, if we adopt Definition 3.4
for argument completion, then we have the following equivalence:

Theorem 3.11 Let 〈A1, h1〉 and 〈A2, h2〉 be two arguments in a program P . Then,
〈A1, h1〉 = 〈A2, h2〉 iff 〈A1, h1〉 � 〈A2, h2〉.

Proof: In the following, we write 〈A1, h1〉 w 〈A2, h2〉 iff (at least) condition 1 of Def-
inition 3.10 holds. Obviously, in such a case condition 2 of Definition 3.10 is equiva-
lent to 〈A2, h2〉 6w 〈A1, h1〉. Therefore, we have 〈A1, h1〉 = 〈A2, h2〉 iff 〈A1, h1〉 w
〈A2, h2〉 and 〈A2, h2〉 6w 〈A1, h1〉. Since the relationship between � and � is de-
fined analogously in Definition 3.1, we only have to show that 〈A1, h1〉 w 〈A2, h2〉
iff 〈A1, h1〉 � 〈A2, h2〉, because this implies the conjecture.

Let us first prove the direction from left to right of this statement. Thus, by hypoth-
esis it holds that ΠG∪H∪A1 ` h1 for some set of possible facts H with ΠG∪H 0 h1

(non-triviality condition). This means there is a derivation T with ΠG∪H∪A1 `T h1.
Since ΠG does not contain any facts, the leaves in T must be labeled with literals from
H . Because of H ⊆ F (the set of possible facts), there must exist a derivation T ′ for
h1 from P , that is identical with T , but completed with additional subderivations be-
low those leaves in T which are not facts in P and afterwards pruned wrt. A1.

Let now A1 be the completed argument wrt. the derivation tree T ′ (according to
Definition 3.4). Clearly, H ⊆ Lit(A1) and H ∪ A1 ` h1. Let now U be a minimal
subset of H such that U ∪ A1 ` h1. By Definition 3.8, U is a non-trivial activa-
tion set wrt. A1. Therefore, it holds U ∈ NTAct-sets(A1). But then, the precondition
〈A1, h1〉 w 〈A2, h2〉 implies ΠG ∪ U ∪ A2 ` h2 by Definition 3.10. Because of
H ⊇ U , it follows ΠG ∪H ∪A2 ` h2 and thus 〈A1, h1〉 � 〈A2, h2〉. This completes
the first part of this proof.

The direction from right to left (〈A1, h1〉 � 〈A2, h2〉 implies 〈A1, h1〉 w
〈A2, h2〉) is more or less straightforward. Let U ∈ NTAct-sets(A1) be a non-trivial
activation set. Then by Definition 3.8, there is a completed argument A1, such that
U ⊆ Lit(A1) and U ∪A1 ` h1. According to Definition 3.4,A1 stems from a deriva-
tion tree T ∗ that is pruned wrt. A1. This implies A1 ⊆ ΠG ∪ A1. Hence, it holds
ΠG ∪ U ∪ A1 ` h1. Since U is a non-trivial activation set by hypothesis, it follows

16 Journal of Applied Non-Classical Logics. Volume 12 - n◦ 1/2002

ΠG ∪ U ∪ A2 ` h2 because of the precondition 〈A1, h1〉 � 〈A2, h2〉 (see Defini-
tion 3.1). Thus, finally we have 〈A1, h1〉 w 〈A2, h2〉. This completes the second part
of the proof.

3.4. Characterization by Path Sets

In the previous section, we expressed specificity by means of activation sets. In
this section, we will go one step further by defining specificity via the comparison of
(sets of) derivations. For this, we will identify each defeasible derivation tree with its
sets of paths in the tree.

Let N be a leaf node in a (possibly pruned) derivation tree T . We define the path
in T through N as the set consisting of the literal labeling N , together with all literals
labeling its ancestors (except the root node). Let Paths(T) be the set of all paths in T
through all leaf nodes N .

Example 3.12 The path sets for the derivation trees in Figure 1, which are
already pruned wrt. the corresponding arguments, are (1) {{libero(diego)}},
(2) {{player(diego), libero(diego)}}, and (3) {{libero(diego)}, {eager(diego)}},
respectively. Consider example 2.4 and the tree T in Figure 1 (3) once again. Since
T 〈A2,h〉 simply consists of one node—the root node—which is labeled with h, it holds
Paths(T 〈A2,h〉) = {∅}.

With this notion of paths, we are able to give a (preliminary) syntactic definition
of specificity as follows, by introducing the relation �. We will see later (in Theo-
rem 3.15) that � and � are equivalent if the arguments involved in the comparison
correspond to exactly one derivation tree.

Definition 3.13 Let T1 and T2 be two derivation trees. We define T1 � T2 iff for all
t2 ∈ Paths(T2) there exists a path t1 ∈ Paths(T1) such that t1 ⊆ t2.

As already observed in the previous section, an argument cannot always be identi-
fied with one unique derivation or completed argument, but with a set of those. There-
fore, we will take this into account in our next definition.

Definition 3.14 (Syntactic criterion) Let 〈A1, h1〉 and 〈A2, h2〉 be two arguments in
a program P . Then 〈A1, h1〉 ≥ 〈A2, h2〉 iff for all derivation trees T1 for h1 pruned
wrt. A1 there is a tree T2 for h2 pruned wrt. A2 such that T1 � T2.

Now, we are able to state yet another formulation of specificity by means of the
relation ≥ in the subsequent theorem. It gives us a syntactic characterization of speci-
ficity without guessing sets of possible facts H ⊆ F .

Computing Generalized Specificity 17

Theorem 3.15 Let 〈A1, h1〉 and 〈A2, h2〉 be two arguments in a program P . Then,
〈A1, h1〉 ≥ 〈A2, h2〉 implies 〈A1, h1〉 � 〈A2, h2〉. If ΠG is empty, then also the
converse holds: 〈A1, h1〉 � 〈A2, h2〉 implies 〈A1, h1〉 ≥ 〈A2, h2〉.

Proof: Let us first prove the first part of the statement. Thus, by hypothesis it holds that
ΠG∪H ∪A1 ` h1 for some set of possible facts H with ΠG∪H 0 h1 (non-triviality
condition). This means there is a derivation T1 with ΠG ∪ H ∪ A1 `T1

h1. Since
ΠG does not contain any facts, the leaves in T1 must be labeled with literals from H .
Because of H ⊆ F (the set of possible facts), there must exist a derivation T ′

1 for h1

from P , that is identical with T1, but completed with additional subderivations below
those leaves in T1 which are not facts in P in A1, and afterwards pruned wrt. A1.

Now, by precondition, there is a derivation T ′
2 for h2 pruned wrt. A2 such that

T ′
1 � T ′

2. Since by hypothesis the activation set H for 〈A1, h1〉 is non-trivial, for each
path t ∈ Paths(T ′

2), there must be a literal L ∈ H , since otherwise there would be
a path t∗ in Paths(T ′

2), such that no element of H occurs in t∗, but this contradicts
T ′

1 � T ′
2. Now we delete all subderivations below nodes labeled with a literal L ∈ H .

Obviously, the obtained tree T2 is a derivation tree, satisfying ΠG ∪H ∪ A2 `T2
h2.

Hence, it holds ΠG ∪H ∪A2 ` h2. This completes the first part of the proof.

In order to show the second part, we first notice that since an argument A must
be minimal (according to condition 3 of Definition 2.7), for each literal L, there can
be at most one defeasible rule with head L in A. Furthermore, since ΠG is empty by
precondition in this case, it follows, that every argument 〈A, h〉 corresponds to exactly
one derivation tree T . This observation will be helpful in the analysis that follows.

Let T1 be the derivation for 〈A1, h1〉 (pruned wrt.A1), which exists by hypothesis.
The leafs of this tree clearly are labeled with program facts. Let H denote the set of
facts among them. Obviously,A1 ∪H ` h1. It also holds ΠG ∪H 0 h1, since ΠG is
empty and h1 /∈ H (because otherwise h1 must be a fact in P , which implies that A1

is not minimal). Therefore, we concludeA2∪H ` h2 because of 〈A1, h1〉 � 〈A2, h2〉
(by precondition).

Let T2 be the corresponding derivation (pruned wrt.A2), which is unique as stated
above. Let us assume T1 4 T2. Then there must be a path t2 ∈ Paths(T2) such
that for all paths ti ∈ Paths(T1) it holds ti 6⊆ t2. This means that in each path ti

there must be (at least) one literal L which is not in t2. Let H ′ be the set of all these
literals. Clearly, H ′ is a non-trivial activation set for 〈A1, h1〉, since ΠG is empty and
H ′ cannot contain h1 (because h1 /∈ ti for all ti ∈ Paths(T1)).

Thus by precondition, there must be a derivation T ′
2 with A2 ∪H ′ `T ′

2
h2. Now,

T ′
2 can be completed with additional subderivations and pruned wrt. A2 such that all

leaves are facts. However, the obtained tree is different from T2, because it cannot
contain the path t2. But this contradicts to the fact that derivation trees are uniquely
determined. Hence, it holds T1 �T2, and finally 〈A1, h1〉 ≥ 〈A2, h2〉. This completes
the second part of the proof.

18 Journal of Applied Non-Classical Logics. Volume 12 - n◦ 1/2002

Example 3.16 In order to see the necessity of the restriction in the second part of
Theorem 3.15, let us consider the following program:

{(x —<a, b), (b —<c), (∼x —<c, d), (d —<a), a, c, (∼x← b, d)}

For the arguments A = {(x —<a, b), (b —<c)} and B = {(∼x —<c, d), (d —<a)}, it
holds 〈A, x〉 � 〈B,∼x〉, because {a, b} and {a, c} (and their supersets not containing
x) are the only non-trivial activation sets for 〈A, x〉, which also activate 〈B,∼x〉.
However, 〈A, x〉 6≥ 〈B,∼x〉, because there is only one derivation T1 for x (shown in
Figure 4 (a)), and there are two derivations T2 (shown in Figures 4 (b) and 4 (c)) for
∼x (pruned wrt. B), but for both of them it holds T1 4 T2. In order to see this, note
that the literal c actually does not belong to the tree in Figure 4 (c), because it has to
be pruned wrt. the argument B.

(a) x (b) ∼x (c) ∼x
� � � � ↗ ↖
a b c d b d

| |
... |

c a c a

Figure 4. Derivation trees for Example 3.16.

3.5. Summary

In this section, we have introduced two different characterizations of specificity,
namely by activation sets (Section 3.3) and path sets (Section 3.4). In contrast to other
approaches, we consider a very general setting here, namely where (i) antecedents
of rules may be arbitrary large sets of positive and negative literals, and (ii) mixed
rule sets are allowed, i. e. with defeasible and also strict rules (as already mentioned in
Section 3.2). Therefore, our proposal can be seen as an extension of several approaches
in the literature [AMG 96, BEN 97, DUN 96, GEL 90b, HOR 94].

As we have seen, the original definition of general specificity (Definition 3.1) can
be characterized equivalently by activation or path sets, which decreases the computa-
tional complexity for specificity. With activation sets, we do not have to try out all of
the exponentially many possible activation sets (as already stated in Section 3.3). The
same holds for the characterization by path sets, which allows us to restrict our atten-
tion to the derivations of the given literal only. Hence, both characterizations yield us
criteria that can be implemented in a computationally attractive way.

The complexity for computing specificity in the restricted setting where both re-
strictions from Section 3.2 are present (antecedents are singletons; no strict back-
ground knowledge) can easily be determined for our approach. In this case there is
only one derivation for each literal (which can be seen in the proof of Theorem 3.15,

Computing Generalized Specificity 19

second part), and each derivation is just a linear sequence of literals. Thus, checking
our syntactic criterion ≥ for the comparison of arguments consists of just one subset
test that can be done in polynomial time, i. e. quite efficiently.

Interestingly, the combination of all these linear derivations from above in one
graph resembles defeasible inheritance networks as defined in [HOR 94]. There are
many similarities between reasoning in these networks and our approach. Horty
[HOR 94] defines the notion defeasible inheritability of paths in a network. According
to this definition, paths have to be constructible, non-conflicting, and non-preemptive.
These notions loosely correspond to the notions derivable (Definition 2.5) and strictly
more general (wrt. specificity, Definition 3.1) in our context. The above-mentioned
properties of networks can also be tested in polynomial time.

Besides these obvious relations and similarities, there is one major conceptual dif-
ference. Horty’s (and others’) approaches base their notion of defeasible inheritance
on procedures that can be applied to defeasible inheritance networks. But this might
lead to counterintuitive results. For instance, cyclic networks do not always have an ex-
tension, and for cycles with strict rules, special procedures have to be employed, e. g.
by computing equivalence classes (see [HOR 94, pp. 125-141]). In contrast to this, our
notion of defeasibility is based on the semantical notion of specificity, which makes
use of the well-known concept of SLD-derivation from the field of logic programming
(see Section 2.2). The characterizations with activation and path sets implement this
clean semantic notion.

Finally, it must be remarked the comparison of arguments is embedded into a di-
alectical process, where arguments may be defeated, and there may exist defeaters
for the defeaters, and so on. In DeLP a complete dialectical analysis is performed
constructing a tree of arguments. Since this is not the subject of this paper, we refer
the interested reader to [GAR 98, SIM 92] for details on the dialectical process. The
syntactic criterion (≥) for specificity can be used directly by the defeater notion (see
Definition 2.9). Thus, the new definition for specificity can be embedded naturally in
DeLP in a modular way.

4. Related Work

Next we will relate our work to other approaches to argumentation. In Section 4.1
we will relate our approach to other argumentation formalisms and their comparison
criteria for conflicting arguments or default rules. We will then briefly discuss other
frameworks for defeasible and default reasoning in Sections 4.2 and 4.3.

A more detailed overview and comparison of logical models of arguments is given
in the survey article [CHE 00]. The journal article [CHE 02] relates the defeasible
logic programming framework with specificity and its semantics to classical logic
programming frameworks. It shows that the DeLP semantics is closely related to the
well-founded semantics [GEL 88b] and the stable model semantics [GEL 88a] for
normal logic programs. For more details the interested reader is referred to [CHE 02].

20 Journal of Applied Non-Classical Logics. Volume 12 - n◦ 1/2002

4.1. Argumentation

Dung and Son in [DUN 96] introduce an argumentation-theoretic approach to de-
fault reasoning with specificity. Default reasoning in general, and argumentative rea-
soning in particular, is defined in terms of a set E of evidence (or facts), and a pair
K = (D, B) which represents the domain knowledge consisting of a set of default
rules D, and a first-order theory B representing background knowledge (∆ and ΠG in
our notation). As stated before, our approach also takes into consideration the back-
ground knowledge B that was assumed empty in [DUN 96]. It is certainly interesting
to consider a generalized setting, where evidence and background knowledge are not
restricted to facts and strict rules, respectively. But this is beyond the scope of this
paper.

In [DUN 96], the authors claim that most priority-based approaches define the
semantics of Th wrt. certain partial orders on D, determined only by K . Let POK

be the set of all partial orders defined in this way. For every partial order α ∈ POK

(where (d, d′) ∈ α means that d has lower priority than d′), we define <α to be a
partial order between sets of defaults in D, where S <α S′ means that S is preferred
to S′. Whatever the definition of <α, it has to satisfy the following property: Let S
be a subset of D, and let d, d′ be two defaults in D such that (d, d′) ∈ α. Then
S ∪ {d′} <α S ∪ {d}.

The partial order <α can be extended into a partial order between models in B∪E,
by defining M <α M ′ iff DM <α DM ′ , where DM is the set of all defaults in D
which are satisfiable in M . A default p/q is satisfiable in M iff the implication p→ q
is satisfiable in M . A model M of B ∪ E is a preferred model of Th iff there exists
a partial order α in POK such that M is minimal wrt. <α. [DUN 96] shows that any
preferential semantics based on <α is not satisfactory enough since the set of evidence
E is not considered.

Example 4.1 (Taken from [DUN 96]) Consider the default theory Th = (E, K),
where B = ∅, D = {d/c, c/b, d/¬a, b/a }, and E = {d}. The desirable semantics here
is represented by the model M = {d, c, b,¬a}. To have this semantics, most priority-
based approaches assign the default b/a a lower priority than the default d/¬a. Let us
consider Th under a new set E = {d,¬c, b}. Since c does not hold, the default d/¬a
cannot be considered more specific than the default b/a, so that it should not be the
case that either a or ¬a are concluded.

However, in any priority-based approach using the same priorities between de-
faults wrt. E and E′, we have M = {¬a, d,¬c, b} <α M ′ = {a, d,¬c, b} since
DM = {c/b, d/¬a} <α D′

M = {c/b, b/a} (due to the fact that (b/a, d/¬a) ∈ α).
Hence priority-based approaches would conclude ¬a given (E ′, K), which is not the
intuitive result, leading to the idea that default b/a should have a lower priority than
d/¬a under evidence E, but a different priority under evidence E ′.

Computing Generalized Specificity 21

Example 4.1 can be recast into the DeLP formalism by rewriting a default rule a/b
as a defeasible clause b —<a. Let us consider the preferred model associated with a
DeLP program as defined by those literals supported by arguments ultimately unde-
feated. It turns out that the intuitively preferred model is computed correctly, since the
evidence E is taken into account.

Example 4.2 Consider the set ∆ = { (a —<b), (∼a —<d), (c —<d), (b —<c)} of defea-
sible clauses, and let Π = {d}. In this case, we have arguments for b, c, d, a and
∼a. The argument for ∼a is more specific than the argument for a. However, if
Π = {d ,∼c , b}, we will have still undefeated arguments for d, ∼c and b, but ∼a
will no longer hold (since it is blocked by the argument {a —<b}).

The previous example shows that in our approach, preference among defaults (de-
feasible rules) is determined dynamically during the dialectical analysis. This implies
that our approach is context-sensitive as defined in [DUN 96] (although this is denied
in the same reference). A distinctive feature of specificity is that it can be generalized
to other common-sense reasoning approaches where the notion of derivation plays
a central role. Thus specificity results as a useful comparison criterion for choosing
between conflicting extensions in proof-theoretic approaches, whereas the dialectical
analysis determines whether a given extension (argument) is ultimately preferred.

In [BEN 97], Benferhat and Garcia investigate a local approach to deal with con-
flicts in the presence of default rules. They suggest that when a conflict appears, the
set of pieces of information that are responsible of this conflict are to be identified,
and then (using a new definition of specificity) priorities should be attached to de-
fault rules inside each conflict. They claim that the resulting approach is modular, in
the sense that the step of computing the specificity ordering of the defaults is inde-
pendent of the step of solving conflicts. Hence, if another definition of specificity is
preferred, then it is not very hard to adapt it to their approach. Note that this way of
handling specificity differs from ours, in the sense that default rules are labeled with
priorities inside each conflict, whereas our characterization defines preference just in
terms of activation sets and derivation trees, without any particular priority relation-
ship among defeasible rules. It must be remarked that both our approach and Ben-
ferhat and Garcia’s [BEN 97] rely on the notion of defeasible inference. In [BEN 97]
defeasible inheritance networks are used and depicted as trees or graphs; in our ap-
proach, defeasible inference is expressed in terms of arguments and dialectical trees.
However, the underlying logical languages in both approaches differ. Benferhat and
Garcia depart from a propositional logical language L, which differs from the lan-
guage for defeasible logic programs (e. g., in [BEN 97] disjunctions in heads of rules
are allowed).

In [AMG 96], Amgoud, Cayrol and Le Berre investigate the problem of defining
preference relations to compare conflicting arguments. They state that two kinds of
preference relations are most commonly encountered: implicit relations, which are

22 Journal of Applied Non-Classical Logics. Volume 12 - n◦ 1/2002

syntactically extracted from the belief base (in line with the specificity criterion pre-
sented in this paper), and explicit relations which are most often induced by a priority
ordering on the belief base itself. Unlike our approach they focus on explicit prefer-
ence relations. They discuss three explicit preference relations induced by a preference
relation defined on the support of the arguments. The first preference criterion is de-
fined in the context of possibilistic logic [BEN 93], and assumes a stratified belief
base. The second and the third criteria (based on [ELV 93] and [CAY 93], respec-
tively) assume that a partial pre-ordering≤ is defined on the belief base.

The authors show that the first and the second approaches lead to contradictory re-
sults in some examples, and the third is a refinement of the first. Finally, they propose
to apply their particular implementation of an Assumption-based Truth Maintenance
System (ATMS) to argument-based reasoning taking into account a stratified base of
clauses. It should be noted that the three relations proposed in this paper are based on
explicit priorities between rules. In contrast, our approach focuses on comparing ar-
guments, which involves a set of defeasible rules (Definition 2.7) without considering
priorities between two rules.

Other argumentation formalisms—particularly those motivated by legal reasoning,
such as [PRA 97]—consider priorities as well as defeasible reasoning about priorities.
It must be remarked that in these cases criteria for comparing arguments are also
debatable, and in many cases they are subordinated to hierarchical and temporal con-
siderations (see [PRA 97] for an in-depth discussion). In contrast to these approaches,
we concentrate on first finding an acceptable criterion for determining preferred ex-
tensions associated with the presence of defeasible information. Incorporating other
features (such as hierarchical or temporal preference principles) is intended for further
research.

4.2. Prioritized Default Logic and Inheritance Reasoning

Brewka and Eiter [BRE 00] have extended default logic in order to handle priori-
ties, developing a Prioritized Default Logic (PDL). This approach has many properties
which seem relevant for argumentation, such as explicit representation of preferences
and reasoning about preferences. Although this approach is not explicitly argument-
based, prioritized default theories extend default theories adding a strict partial order
on defaults, using this ordering to define preferred extensions.

A prioritized default theory ∆ = (D, W, <) extends the default theory (D, W)
with a strict partial order < on default rules. A default d will be considered preferred
over default d′ whenever d < d′ holds. ∆ is called fully prioritized iff < is a well-
ordering. The following proposition can be established: if ∆ = (D, W, <) is a fully
prioritized ground theory, and E a classical extension of ∆, then E is a preferred
extension of ∆ iff for each default d ∈ D such that pre(d) ∈ E and cons(d) 6∈ E
there exists a set of defaults Kd ⊆ {d′ ∈ GD(D, E) | d′ < d} such that d is defeated
in Th(W ∪ cons(Kd)). Given a default d = a : b1, . . . , bn/c, where a, b1, . . . , bn, c

Computing Generalized Specificity 23

are first-order formulas, a is called the prerequisite of d, each bi is a justification,
and c is the consequent. This is denoted as pre(d), jus(d) and cons(d), respectively.
Here GD(D, E) denotes the set of all defaults from D which are generating in E (a
default d is called generating in a set of well-formed formulae S if pre(d) ∈ S and
¬just(d)∩S = ∅. This proposition basically says that in preferred extensions defaults
which are not applied must be defeated by defaults with higher priority.

PDL has a number of properties which seem to be relevant for defeasible argumen-
tation, such as non-monotonicity, explicit representation of preferences and reasoning
about preferences. In [BRE 00], it is proven that PDL satisfies two reasonable princi-
ples for preference handling, which distinguishes PDL from other approaches. How-
ever, since an ordering of defaults is enforced, similar problems to those mentioned
in Section 4.1 are also present. Further, the approach in [BRE 00] considers sets of
default rules only, not also strict rules, as done here. In addition, no procedures for
prioritized default theories are investigated in [BRE 00].

In [GEL 90b], a formalization of inheritance reasoning in autoepistemic logic is
presented. In this context, an autoepistemic theory Th is given by a set of propositional
formulae augmented by a belief operator. Also strict rules besides defeasible rules
are taken into consideration (as done here). However, in inheritance networks, rule
bodies are restricted to containing at most one literal only—in contrast to the approach
presented here.

The proposed formalization provides a completely axiomatic view on inheritance
reasoning, introducing the notions belief sets and explanations. An explanation of an
autoepistemic system is a set D of sentences such that the theory Th∪D has a stable
expansion (i. e., there is a set E such that E is identical with the set of consequences
from Th∪D∪E). In this approach, explanations are ordered by a pre-order < (prefer-
ability relation).

The semantics is explained completely axiomatically in [GEL 90b], by introducing
the notion of rank in an inheritance network, i. e. the length of the longest path which
ends at a certain node. But the authors do not investigate operational procedures for
inheritance networks. Rational principles are incorporated in the semantics: minimal-
ity and reliability of explanations. The semantics is similar to the one presented here,
because minimal and more reliable explanations are preferred in both approaches.

4.3. Logic Programming and Defeasible Logic with Superiority Relation

In [KAK 94] and later in [DIM 95], Logic Programming without Negation as Fail-
ure (LPwNF) was introduced. A LPwNF program consists of a set of basic rules
L0 ← L1, . . . , Lk (where Li are literals that could be preceded by strong negation)
and a given irreflexive and antisymmetric priority relation among program rules. The
authors claim that default negation can be removed using the following transforma-
tion: the rule r0 = p← q, not r is transformed into two rules, r1 = p← q and
r2 = ∼p← r, with r1 < r2. Hence, when r is not derivable the rule r2 cannot be used,

24 Journal of Applied Non-Classical Logics. Volume 12 - n◦ 1/2002

and there is a derivation for p. On the other hand when r is derivable, rule r2 blocks r1.
However, the problem with this approach is that when r is derivable, a new literal (not
present in the original program) is derivable: ∼p. Contradiction between derivations
is based on complementary literals, and the priority relation among rules. The proof
procedure of LPwNF is very similar to the one of d-Prolog [COV 88, NUT 94].

Although in [DIM 95] there is no comparison with defeasible logic, in [ANT 00] a
comparison among LPwNF, defeasible logic, and so-called courteous logic programs
is given. The main result of [ANT 00] is that defeasible logic can prove everything that
sceptical LPwNF can. In [GEL 97], Gelfond and Son developed a system to “investi-
gate the methodology of reasoning with prioritized defaults in the language of logic
programs under the answer set semantics”. Their system allows the representation of
defeasible and strict rules, and the representation of an order among those rules. The
way in which defeasible inferences are obtained is very similar to [ANT 00], although
no comparison of these two systems is given.

In [ANT 00, MAH 98], another approach for defeasible reasoning is presented. In
this context, defeasible logic programs are (almost) identical to programsP as defined
in Definition 2.3. But there, specificity is a relation between program clauses, modeled
by the so-called superiority relation >, whereas in our framework specificity is an im-
plicit relation between arguments according to Definition 3.1. The main difference is
that this approach is not argument-based. Since the relation > must be explicitly given
by the programmer in addition to the program P , we have to consider the pair (P , >)
for this approach. Since the procedure for deriving defeasibly valid literals is quite
different from our approach, it is not clear how to express specificity as defined here
by means of an appropriately chosen superiority relation. However, the construction
of such a relation is a non-trivial issue, and deserves a more detailed analysis.

5. Conclusions

Formalisms for representing common-sense knowledge need to deal with contra-
dictory conclusions, and decide between them with some comparison criterion. To our
opinion, this comparison should be performed within the formalism itself by analyzing
the pieces of knowledge which lead to contradictory conclusions. Thus, our aim was
to look forward for an autonomous comparison criterion that may fit in any rule-based
formalism.

As a result we characterized a generalized version of specificity, based on the
comparison criterion defined in [POO 85, SIM 92]. We showed that specificity can
be redefined in terms of two different approaches: activation sets (Theorem 3.11) and
derivation trees (Theorem 3.15). A syntactic criterion was obtained, which can be im-
plemented in a computationally attractive way. This has been done in the DLP system
(described in [GAR 97]) which implements the algorithm in Figure 3. These results
may be applied to other rule-based formalisms which currently make use of explicit
priorities.

Computing Generalized Specificity 25

Further work will concentrate on investigating even deeper the relationships to
other approaches and possible translations from one method of defeasible reasoning
into another one. For instance, it seems to be possible to reformulate defeasible rea-
soning as done here by means of (extended) logic programs (see also [DUN 96]). Last
but not least, the integration of defeasible reasoning into agent programming should
be tackled in greater detail.

Acknowledgements

This research has been supported by the German-Argentinian program on scien-
tific and technological cooperation, funded by the Bundesministerium für Bildung und
Forschung in Germany and the Secretaría de Ciencia y Tecnología in Argentina (see
also [DIX 99]). A preliminary version of this paper appeared as [STO 00]. We thank
some anonymous referees for a number of suggestions that helped to improve this
article.

6. References

[ALF 96] ALFERES J. J., PEREIRA L. M., Eds., Reasoning with Logic Programming,
LNAI 1111, Springer, Berlin, Heidelberg, New York, 1996.

[AMG 96] AMGOUD L., CAYROL C., BERRE D. L., “Comparing Arguments using Prefer-
ence Orderings for Argument-based Reasoning”, Proc. of the 8th International Conference
on Tools with Artificial Intelligence, ICTAI’96, IEEE, 1996, p. 400-403.

[ANT 00] ANTONIOU G., MAHER M. J., BILLINGTON D., “Defeasible Logic versus Logic
Programming without Negation as Failure”, Journal of Logic Programming, vol. 42, 2000,
p. 47-57.

[BEN 93] BENFERHAT S., DUBOIS D., PRADE H., “Argumentative Inference in Uncertain
and Inconsistent Knowledge Bases”, Proc. of the 9th Conference on Uncertainty in AI,
1993, p. 411-419.

[BEN 97] BENFERHAT S., GARCIA L., “A Coherence-Based Approach to Default Reason-
ing”, GABBAY D. M., KRUSE R., NONNENGART A., OHLBACH H.-J., Eds., Proceedings
of 1st International Joint Conference on Qualitative and Quantitative Practical Reasoning,
LNAI 1244, Bad Honnef, 1997, Springer, Berlin, Heidelberg, New York, p. 43-57.

[BRE 00] BREWKA G., EITER T., “Prioritizing Default Logic”, HÖLLDOBLER S., Ed., In-
tellectics and Computational Logic: Papers in Honor of Wolfgang Bibel, p. 27-46, Kluwer
Academic Publishers, Dordrecht, Boston, London, 2000.

[CAY 93] CAYROL C., ROYER V., SUAREL C., “Managment of Preferences in Assumption-
Based Reasoning”, BOUCHON-MEUNIER B., VALVERDE L., YAGER R. R., Eds., Pro-
ceedings of 4th International Conference on Processing and Management of Uncertainty in
Knowledge-Based Systems 1992 – Advanced Methods in Artificial Intelligence, LNCS 682,
Springer, Berlin, Heidelberg, New York, 1993, p. 13-22.

[CHE 00] CHESÑEVAR C. I., MAGUITMAN A., LOUI R., “Logical Models of Argument”,
ACM Computing Surveys, vol. 32, num. 4, 2000, p. 337-383, ACM Press.

26 Journal of Applied Non-Classical Logics. Volume 12 - n◦ 1/2002

[CHE 02] CHESÑEVAR C. I., DIX J., STOLZENBURG F., SIMARI G. R., “Relating Defea-
sible and Normal Logic Programming through Transformation Properties”, Theoretical
Computer Science, , 2002, To appear.

[COV 88] COVINGTON M. A., NUTE D., VELLINO A., Prolog Programming in Depth, Scott,
Foresman and Company, Glenview, IL, London, 1988.

[DIM 95] DIMOPOULOS Y., KAKAS A., “Logic Programming without Negation as Failure”,
Proceedings of 5th. International Symposium on Logic Programming, Cambridge, MA,
1995, MIT Press, p. 369–384.

[DIX 99] DIX J., STOLZENBURG F., SIMARI G. R., FILLOTTRANI P. R., “Automating De-
feasible Reasoning with Logic Programming (DeReLoP)”, JÄHNICHEN S., LOISEAU I.,
Eds., Proceedings of the 2nd German-Argentinian Workshop on Information Technology,
Königswinter, 1999, p. 39-46.

[DUN 96] DUNG P. M., SON T. C., “An Argumentation-theoretic Approach to Reasoning
with Specificity”, AIELLO L. C., DOYLE J., SHAPIRO S. C., Eds., Proceedings of 5th
International Conference on Principles of Knowledge Representation and Reasoning, 1996,
p. 506-517.

[ELV 93] ELVANG-GORANSONN M., FOX J., KRAUSE P., “Dialectic Rreasoning with Incon-
sistent Information”, Proc. of the 9th Conference on Uncertainty in AI, 1993, p. 114-121.

[GAB 94] GABBAY D. M., HOGGER C. J., ROBINSON J. A., Eds., Handbook of Logic in
Artificial Intelligence and Logic Programming. Volume 3: Nonmonotonic Reasoning and
Uncertain Reasoning, Oxford University Press, 1994.

[GAR 97] GARCÍA A. J., “Defeasible Logic Programming: Definition and Implementation”,
Master’s thesis, Dep. de Ciencias de la Computación, Universidad Nacional del Sur, Bahía
Blanca, Argentina, Jul. 1997.

[GAR 98] GARCÍA A. J., SIMARI G. R., CHESÑEVAR C. I., “An Argumentative Framework
for Reasoning with Inconsistent and Incomplete Information”, Workshop on Practical
Reasoning and Rationality, 13th biennial European Conference on Artificial Intelligence
(ECAI-98), Aug. 1998.

[GAR 00] GARCÍA A. J., “Defeasible Logic Programming: Definition, Operational Semantics
and Parallelism”, PhD thesis, Computer Science Department, Universidad Nacional del Sur,
Bahía Blanca, Argentina, Dec. 2000.

[GEL 88a] GELFOND M., LIFSCHITZ V., “The Stable Model Semantics for Logic Program-
ming”, KOWALSKI R., BOWEN K., Eds., 5th Conference on Logic Programming, MIT
Press, 1988, p. 1070-1080.

[GEL 88b] VAN GELDER A., ROSS K. A., SCHLIPF J. S., “Unfounded Sets and well-founded
Semantics for general logic Programs”, Proceedings 7th Symposion on Principles of
Database Systems, 1988, p. 221-230.

[GEL 90a] GELFOND M., LIFSCHITZ V., “Logic Programs with Classical Negation”, WAR-
REN D., SZEREDI P., Eds., Proceedings of the International Conference on Logic Program-
ming, MIT Press, 1990, p. 579-597.

[GEL 90b] GELFOND M., PRZYMUSINSKA H., “Formalization of Inheritance Reasoning in
Autoepistemic Logic”, Fundamenta Informaticae, vol. XIII, 1990, p. 403-443, IOS Press.

[GEL 97] GELFOND M., SON T. C., “Reasoning with Prioritized Defaults”, Selected Papers
from the Workshop on Logic Programming and Knowledge Representation, LNAI 1471,
Springer, Berlin, Heidelberg, New York, 1997, p. 164–223.

Computing Generalized Specificity 27

[HOR 94] HORTY J. F., “Some Direct Theories of Nonmonotonic Inheritance”, Gabbay et
al. [GAB 94], p. 111-187.

[KAK 94] KAKAS A. C., MANCARELLA P., DUNG P. M., “The Acceptability Semantics for
Logic Programs”, Proceedings of the 11th International Conference on Logic Program-
ming, Santa Margherita, Italy, 1994, MIT Press, p. 504–519.

[LIF 96] LIFSCHITZ V., “Foundations of Logic Programs”, BREWKA G., Ed., Principles of
Knowledge Representation, CSLI Publications, 1996.

[LLO 87] LLOYD J. W., Foundations of Logic Programming, Springer, Berlin, Heidelberg,
New York, 1987.

[LOU 87] LOUI R. P., “Defeat Among Arguments: A System of Defeasible Inference”, Com-
putational Intelligence, vol. 3, num. 3, 1987, p. 100-106.

[MAH 98] MAHER M. J., ANTONIOU G., BILLINGTON D., “A Study of Provability in De-
feasible Logic”, SLANEY J., ANTONIOU G., Eds., Proceedings of 11th Australian Joint
Conference on Artificial Intelligence, LNAI 1502, Springer, Berlin, Heidelberg, New York,
1998, p. 215-226.

[MUR 01] MURRAY J., OBST O., STOLZENBURG F., “Towards a Logical Approach for Soc-
cer Agents Engineering”, STONE P., BALCH T., KRAETZSCHMAR G., Eds., RoboCup
2000: Robot Soccer World Cup IV, LNAI 2019, p. 199-208, Springer, Berlin, Heidelberg,
New York, 2001.

[NUT 94] NUTE D., “Defeasible Logic”, Gabbay et al. [GAB 94], p. 355-395.

[POL 91] POLLOCK J. L., “Self-Defeating Arguments”, Minds and Machines, vol. 1, num. 4,
1991, Special issue on Defeasible Reasoning.

[POO 85] POOLE D. L., “On the Comparison of Theories: Preferring the Most Specific Ex-
planation”, Proceedings of 9th International Joint Conference on Artificial Intelligence,
IJCAI Inc., San Mateo, CA, Morgan Kaufmann, Los Altos, CA, 1985, p. 144-147.

[PRA 97] PRAKKEN H., SARTOR G., “Argument-based logic programming with defeasible
priorities”, Journal of Applied Non-classical Logics, vol. 7, 1997, p. 25-75.

[SIM 92] SIMARI G. R., LOUI R. P., “A Mathematical Treatment of Defeasible Reasoning
and its Implementation”, Artificial Intelligence, vol. 53, 1992, p. 125-157.

[SIM 94] SIMARI G. R., CHESÑEVAR C. I., GARCÍA A. J., “The Role of Dialectics in Defea-
sible Argumentation”, Anales de la XIV Conferencia Internacional de la Sociedad Chilena
para Ciencias de la Computación, Universidad de Concepción, Concepción (Chile), Nov.
1994.

[STO 00] STOLZENBURG F., GARCÍA A. J., CHESÑEVAR C. I., SIMARI G. R., “Introducing
Generalized Specificity in Logic Programming”, FEIERHERD G. E., Ed., Proceedings of
the 6th Argentine Congress on Computer Science, Ushuaia, Argentina, 2000, JAIIO, Buenos
Aires, p. 359-370.

[VRE 97] VREESWIJK G. A., “Abstract Argumentation Systems”, Artificial Intelligence,
vol. 90, 1997, p. 225-279.

[WAN 97] WANG X., YOU J., YUAN L., “Logic Programming without Default Negation Re-
visited”, Proceedings of IEEE International Conference on Intelligent Processing Systems,
IEEE, 1997, p. 1169–1174.

