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Abstract

Recommender systems have evolved in the last years as
specialized tools to assist users in a plethora of computer-
mediated tasks by providing guidelines or hints. Most rec-
ommender systems are aimed at facilitating access to rele-
vant items, a situation particularly common when performing
web-based tasks. At the same time, defeasible argumentation
has evolved as a successful approach in AI to model com-
monsense qualitative reasoning, with applications in many
areas, such as agent theory, knowledge engineering and legal
reasoning. This paper presents a first approach towards the
integration of web-based recommender systems with a defea-
sible argumentation framework. The final goal is to enhance
practical reasoning capabilities of current recommender sys-
tem technology by incorporating argument-based qualitative
inference.

KEYWORDS: Recommender systems, Defeasible Argumen-
tation, Decision support systems, Practical reasoning

Introduction and motivations
Recommender systems (also known assuggesters) have
evolved in the last years as specialized tools to assist users in
a plethora of computer-mediated tasks by providing guide-
lines or hints (Resnick & Varian 1997; Konstan 2004).
Most recommender systems are aimed at helping users to
deal with the problem of information overload by facili-
tating access to relevant items (Maes 1994). A common
technique adopted by many suggester systems is collabora-
tive filtering, which infers preferences of individual users
based on the behavior of multiple users (e.g., (Goldberg
et al. 1992)). Collaborative filtering is based on the as-
sumption that human preferences are correlated. Other rec-
ommender systems are content-based, which are driven by
the premise that user’s preferences tend to persist through
time. Therefore, content-based recommender systems build
on similarities between potential recommendations and the
objects that the user liked in the past. A combination
of collaborative-filtering and content-based recommenda-
tion gives rise to hybrid recommender systems (e.g., (Bal-
abanovic, Shoham, & Yun 1995; Balabanović & Shoham
1997; Billsus & Pazzani 1999; Claypoolet al. 1999)). Given
the huge amount of information existing on the Web, it is
not surprising that the great majority of the recommender

systems have been built around content and resources avail-
able online (e.g., (Armstronget al. 1995; Mladenic 1996;
Lieberman 1995; Pazzani, Muramatsu, & Billsus 1996;
Doorenbos, Etzioni, & Weld 1997)).

Although the effectiveness of existing recommender sys-
tems is remarkable, they still have serious limitations as
they are unable to perform qualitative inference on the rec-
ommendations they offer and are incapable of dealing with
the defeasible nature of users’ preferences. In this con-
text, defeasible argumentation frameworks (Chesñevar, Ma-
guitman, & Loui 2000; Prakken & Vreeswijk 2002) have
evolved to become a sound setting to formalize common-
sense qualitative reasoning. Recent research has shown
that argumentation can be integrated in a growing num-
ber of real-world applications such as multiagent sys-
tems (Parsons, Sierrra, & Jennings 1998; Amgoud, Maudet,
& Parsons 2002; Parsons & McBurney ), legal reason-
ing (Prakken & Sartor 2002), knowledge engineering (Car-
bogim, Robertson, & Lee 2000), analysis of news re-
ports (Hunter 2001) clustering (Gomez & Chesñevar 2004),
argumentation support systems (Verheij 2003), mediation
systems and computer-supported collaborative argumenta-
tion (Maudet & Moore 1999; Reed & Walton 2001; Gordon
& Karacapilidis 1997; Louiet al. 1997).

This paper presents a first approach to integrate recom-
mender system technologies with a defeasible argumenta-
tion framework. The basic idea is to model the preference
criteria associated with the active user and a pool of users
by means of facts, strict rules and defeasible rules. These
preference criteria are combined with additional background
information and used by an argumentation framework to pri-
oritize potential recommendations, thus enhancing the final
results provided to the active user. The rest of the paper
is structured as follows. Section briefly outlines the fun-
damentals of DeLP, a defeasible argumentation formalism
based on logic programming. Section presents a generic
characterization of recommender systems. Section dis-
cusses our proposal for characterizing argument-based rec-
ommender systems. Section presents a case study which
illustrates how the proposed approach works. Finally, Sec-
tion discusses related work and presents the main conclu-
sions that have been obtained.



Modelling Argumentation in DeLP
Several defeasible argumentation frameworks have been de-
veloped on the basis of extensions to logic programming
(see (Ches̃nevar, Maguitman, & Loui 2000; Prakken &
Vreeswijk 2002; Kakas & Toni 1999)).Defeasible logic
programming(DeLP) (Garćıa & Simari 2004) is one of such
formalisms, combining results from defeasible argumenta-
tion theory and logic programming. DeLP is a suitable
framework for building real-world applications that deal
with incomplete and contradictory information in dynamic
domains. In what follows we will present a brief overview
of the DeLP framework. A more in-depth treatment can be
found elsewhere (Garcı́a & Simari 2004).

A defeasible logic program is a set(Π,∆) of Horn-like
clauses, whereΠ and∆ stand for sets ofstrict anddefeasible
knowledge, resp. The setΠ involvesstrict rulesof the form
p ← q1 , . . . , qk andfacts(strict rules with empty body),
and it is assumed to benon-contradictory. The set∆ in-
volvesdefeasible rulesof the formp −−≺ q1 , . . . , qk .The un-
derlying logical language is that of extended logic program-
ming (Gelfond & Lifschitz 1990), enriched with a special
symbol “ −−≺ ” to denote defeasible rules. Both default and
classical negation are allowed (denotednot and∼, resp.).1

DeLP rules are to be thought of asinference rulesrather
than implications in the object language. Deriving literals in
DeLP results in the construction ofarguments. Formally:

Definition 1 (Argument) Given a DeLP programP, anar-
gumentA for a query q, denoted〈A, q〉, is a subset of
ground instances of defeasible rules inP such that:

1. there exists adefeasible derivationfor q fromΠ ∪ A;
2. Π∪A is non-contradictory (i.e,Π∪A does not entail two

complementary literalsp and∼ p, nor doesA contain
literals s andnot s, for anyp, s in P), and

3. A is the minimal set (with respect to set inclusion) satis-
fying (1) and (2).

An argument〈A1, q1〉 is a sub-argumentof another argu-
ment〈A2, q2〉 if A1 ⊆ A2. Given a DeLP programP,
Args(P) denotes the set of all possible arguments that can
be derived fromP.

The notion of defeasible derivation corresponds to the
usual query-driven SLD derivation used in logic program-
ming, performed by backward chaining on both strict and
defeasible rules; in this context a negated literal∼ p is
treated just as a new predicate nameno p. Minimality im-
poses the ‘Occam’s razor principle’ (Simari & Loui 1992)
on arguments.any supersetA′ of A can be proven to be
‘weaker’ thanA itself, as the former relies on more defea-
sible information. The non-contradiction requirement for-
bids the use of (ground instances of) defeasible rules in an
argumentA wheneverΠ ∪ A entails twocomplementary
literals. It should be noted that non-contradiction captures
the two usual approaches to negation in logic programming
(viz. default negation and classic negation), both of which
are present in DeLP and related to the notion of counterar-
gument, as shown next.

1The definitions that follow summarize DeLP with default
negation (see discussion in (Garcı́a & Simari 2004, pages 30-33)).

Definition 2 (Counterargument – Defeat) An argument
〈A1, q1〉 is a counterargumentfor an argument〈A2, q2〉 if
and only if

1. There is an subargument〈A, q〉 of 〈A2, q2〉 such that the
setΠ ∪ {q1, q} is contradictory, or

2. An extended literalnot q1 is present in some rule inA2.2

A preference criterion¹ ⊆ Args(P) × Args(P) will be
used to decide among conflicting arguments. An argu-
ment 〈A1, q1〉 is a defeaterfor an argument〈A2, q2〉 if
〈A1, q1〉 counterargues〈A2, q2〉, and〈A1, q1〉 is preferred
over〈A2, q2〉 with respect to¹. For cases (1) and (2) above,
we distinguish betweenproperandblocking defeatersas fol-
lows:

• In case (1), the argument〈A1, q1〉 will be called aproper
defeaterfor 〈A2, q2〉 if and only if〈A1, q1〉 is strictly pre-
ferred over〈A, q〉 with respect to¹.

• In case (1), if〈A1, q1〉 and 〈A, q〉 are unrelated to each
other with respect to¹, or in case (2),〈A1, q1〉 will be
called ablocking defeaterfor 〈A2, q2〉.
Specificity (Simari & Loui 1992) is used in DeLP as a

syntactic preference criterion among conflicting arguments,
favoring those arguments that aremore informedor more
direct (Simari & Loui 1992; Stolzenburget al. 2003). How-
ever, other alternative preference criteria could also be used.

An argumentation linestarting in 〈A0, q0〉 (denoted
λ〈A0,q0〉 ) is a sequence [〈A0, q0〉, 〈A1, q1〉, 〈A2, q2〉, . . . ,
〈An, qn〉 . . . ] that can be thought of as an exchange of argu-
ments between two parties, aproponent(evenly-indexed ar-
guments) and anopponent(oddly-indexed arguments). Each
〈Ai, qi〉 is a defeater for the previous argument〈Ai−1, qi−1〉
in the sequence,i > 0. In order to avoidfallaciousreason-
ing, dialectical constraints are imposed on such an argument
exchange to be considered rationally acceptable in light of
a given programP. An argumentation line satisfying such
constraints is said to beacceptable, and can be proven to be
finite (see (Garćıa & Simari 2004) for details).

Given a programP and an initial argument〈A0, q0〉, the
set of all acceptable argumentation lines starting in〈A0, q0〉
accounts for a whole dialectical analysis for〈A0, q0〉 (i.e.,
all possible dialogues rooted in〈A0, q0〉), formalized as a
dialectical treeT〈A0,q0〉. Nodes in a dialectical treeT〈A0,q0〉
can be marked asundefeatedanddefeatednodes (U-nodes
and D-nodes, resp.): all leaves inT〈A0,q0〉 will be marked
U-nodes (as they have no defeaters), and every inner node
is to be marked asD-nodeiff it has at least one U-node as
a child, and asU-nodeotherwise. An argument〈A0, q0〉 is
ultimately accepted as valid (orwarranted) with respect to a
DeLP programP iff the root of its associated dialectical tree
T〈A0,q0〉 is labeled asU-node.

Solving a queryq with respect to a given programP ac-
counts for determining whetherq is supported by a war-
ranted argument. Different doxastic attitudes are distin-

2The first notion of attack is borrowed from the Simari-Loui
framework (Simari & Loui 1992); the second one is related
to Dung’s argumentative approach to logic programming (Dung
1993) as well as to other formalizations, such as (Prakken & Sartor
1997; Kowalski & Toni 1996).



guished when answering queryq according to the associated
status of warrant, in particular:

1. Believeq when there is a warranted argument forq that
follows fromP.

2. Believe∼ q when there is a warranted argument for∼ q
that follows fromP.

3. Believe q is undecidedwhenever neitherq nor ∼ q are
supported by warranted arguments inP.

Recommender Systems: fundamentals
Recommender systems are programs that create a model of
the user’s preferences or user’s task with the purpose of fa-
cilitating access to items (e.g. news, web pages, books,
etc.) that the user may find useful (Resnick & Varian 1997;
Konstan 2004). While in many situations the user ex-
plicitly posts a request for recommendations in the form
of a query, many recommender systems attempt to antic-
ipate the user’s needs and are capable of proactively pro-
viding assistance (Rhodes & Maes 2000; Rhodes 2000;
Budzik & Hammond 2000). In order to come up with rec-
ommendations for user queries, conventional recommender
systems rely onsimilarity measuresbetween users or con-
tents, computed on the basis of methods coming either from
the information retrieval or the machine learning commu-
nities. Recommender systems adopt mainly two different
views to help predict information needs. The first approach
is known asuser modelingand relies on the use of a pro-
file or model of the users, which is created by observ-
ing users’ behavior (e.g., (Linton, Joy, & Schaefer 1999;
Deshpande & Karypis 2004)). The second approach is based
on task modeling, and recommendations are based on the
context in which the user is immersed (e.g. (Budzik, Ham-
mond, & Birnbaum 2001; Leakeet al. 2000)). The context
may consist of an electronic document the user is editing,
web pages the user has recently visited, etc.

Two main techniques have been used to compute rec-
ommendations: content-basedand collaborative filter-
ing. Content-based recommenders frequently use machine-
learning techniques to induce a profile of the active user.
Typically, a model of the active user is stored as a list of
rated items. In order to determine if a new item is a poten-
tially good recommendation, content-based recommender
systems rely onsimilarity measuresbetween the new items
and the rated items stored as part of the user model. On the
other hand, recommender systems based on collaborative fil-
tering maintain a pool of users’ profiles. For a given active
user, collaborative recommender systems find other similar
users whose ratings strongly correlate with the current user.
New items not rated by the active user can be presented as
suggestions if similar users have rated them highly.

Some systems combine content-based recommendation
and collaborative filtering giving rise tohybrid recom-
mender systems(e.g., (Balabanovic, Shoham, & Yun 1995;
Balabanovíc & Shoham 1997; Billsus & Pazzani 1999;
Claypool et al. 1999)). Fig. 1 illustrates the main com-
ponents of this approach. A hybrid recommender system
typically generates a model of the active user by monitoring
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Figure 1: A generic framework for an Hybrid Recommender
System

the user behavior or by analyzing his/her declared interest
or feedback. The generated user model is usually combined
with the user information needs and a request for recom-
mendations is presented to a search engine. In addition, the
system maintains a pool of profiles from other users, making
possible the application of collaborative filtering to further
refine the selected set of recommendations.

Although hybrid recommender systems are substantially
more effective than the basic content-based and collabora-
tive filtering approaches, existing systems are still limited.
On the one hand, existing recommender systems are inca-
pable of dealing formally with the defeasible nature of users’
preferences in complex environments. Decisions about user
preferences are mostly based on heuristics which rely on
ranking previous user choices or gathering information from
other users with similar interests. On the other hand, the
quantitative approaches adopted by most existing recom-
mender systems do not have a clean underlying model. This
makes it hard to provide users with a clear explanation of the
factors and procedures that led the system to come up with
certain recommendations. As a result, serious trustworthi-
ness issues may arise, especially in those cases when busi-
ness interests are involved, or when external manipulation is
possible.

We contend that defeasible argumentation can be in-
tegrated into existing recommender system technologies,
paving the way to solve the above problems. We will an-
alyze our proposal in the next section.

Argument-Based Recommender Systems
A fundamental problem addressed by recommender systems
is determining which items arerelevantto a user informa-
tion needs (i.e., which items are worthwhile, given the user’s
preferences and user’s task.) Recommendation results can
be displayed to the user in different formats (e.g. using
charts, colors, or some more specialized notation). In most
cases, independently of the format used, the results shown
are sorted according to some preference criterion (usually
provided by the user). Thus, for example, when looking for



ALGORITHM Recommendon Query
INPUT: Queryq,

DeLP programP = Puser ∪ Ppool ∪ Pdomain.
OUTPUT: List Lnew {recommendation results wrtP ′}
BEGIN
Let L = [s1, s2, . . . sk] be the output of solving queryq
wrt content-based search engineSE
{L is the list of (the firstk) results obtained from
queryq via SE }
Psearch = {facts encodinginfo(s1), info(s2) . . .info(sk)}
{info(Si) stands for features associated with resultSi }
P ’ := Revise (P ∪ Psearch).
{Revise stands for a belief revision operator
{to ensure consistency inP ’ }
Initialize Sw, Su, andSd as empty sets.
{Sw, Su, andSd stand for the set of resultssi’s
which are warranted as relevant, undecided and
warranted as non-relevant, respectively}
FOR EVERY si ∈ L
DO
Solve queryrel(si) using DeLP programP ′
IF rel(si) is warrantedTHEN addsi to Sw

ELSE
IF ∼ rel(si) is warrantedTHEN addsi to Sd

ELSE addsi to Sd

Return RecommendationLnew =
[sw

1 , sw
2 , . . . , sw

j1, s
u
1 , su

2 , . . . , su
j2, s

d
1, . . . , s

d
j3]

END

Figure 2: High-level algorithm for solving queries in an
argument-based recommender system

a recommendation about books in a web-based bookstore,
recommendations can be sorted in terms of price, availabil-
ity, etc. In the sequel we will assume (without loss of gen-
erality) that recommendation results can be represented as a
list [s1, s2, . . .sk], assuming that the earlier a result appears
in the list, the earlier it is shown on the screen and the more
relevant for the user it is.

A common problematic situation occurs when hundreds
or thousands of recommendation results are available, so
that a detailed user analysis of the whole search space be-
comes extremely expensive. Experienced users of recom-
mender systems rely many times on the combination of dif-
ferent (mostly implicit) preference criteria to build and eval-
uate alternativehypothesesfor filtering recommendation re-
sults. In this context, meta-information associated with rec-
ommendation results turns out to be particularly helpful.
Thus, as an example, particular features from URL’s and
HTML pages (e.g. web domain, year, author, etc.) may help
the user discard some recommendation results he/she does
not find useful.

Since users’ preference criteria provide incomplete and
potentially inconsistent knowledge about the search domain,
our proposal is to model the users’ preference criteria in
terms of a DeLP program built on top of a content-based
search engine. The resulting framework is anargument-
based recommender system, in which recommendations are
provided on the basis of arguments built upon information
from the active user, the pool of users and domain (back-

ground) knowledge (see Figure 3(a)). The above aspects
are to be encoded as a DeLP programP = Puser ∪ Ppool ∪
Pdomain. SetsPuser andPpool represent preferences and
behavior of the active user and the pool of users, respec-
tively. In the case of the active user, his/her profile can be
encoded as facts and rules in DeLP. In the case of the pool
of users, rule induction techniques are in order3 resulting
in defeasible rules characterizing trends and general prefer-
ence criteria (e.g.,normally if a given user likes X then she
also likes Y). The setPdomain represents the domain (back-
ground) knowledge, encoded using facts and rules in DeLP.

The user’s information needs are presented to a content-
based search engine, which returns a list of search results
[s1, s2, . . . , sk]. In a typical hybrid recommender system,
such results are contrasted against the active user’s profile
and the pool of users’ profiles to obtain personalized rec-
ommendations as a final output. Our proposal is based on
properly encoding the list of search results as DeLP facts.
We can assume thatsi is a unique name characterizing a
piece of informationinfo(si), in which a number of as-
sociated features (meta-tags, filename, URL, etc.) can be
identified. We assume that such features can be identified
and extracted frominfo(si) by some specialized tool, as
suggested by Hunter (Hunter 2001) in his approach to deal-
ing with structured news reports (see discussion in Section ).
Such features will be encoded as a setPsearch of new DeLP
facts, extending thus the original programP into a new pro-
gramP ’. A special operatorRevise deals with possible
inconsistencies found inPsearch with respect toP ’, ensur-
ingP ∪ Psearch is not contradictory.4

At this point the obtained search results can be analyzed in
the context ofP ’. We will consider a distinguished predicate
namerel for analyzing therelevanceof every recommenda-
tion resultsi. In this setting, the existence of a warranted
argument〈A, rel(si)〉 built on the basis of DeLP programP
will allow to conclude thatsi is a candidate recommendation
relevant to the user’s information needs. We will classify the
elements in the original listL of content-based search results
into three sets, namely:

• Sw (warranted results): those resultssi for which there
exists at least one warranted argument supportingrel(si)
based onP ’.

• Su (undecided results): those resultssi for which there
is no warranted argument forrel(si), neither there is a
warranted argument for∼ rel(si) on the basis ofP ’, and

• Sd (defeated results): those resultssi such that there is a
warranted argument supporting∼ rel(si) on the basis of
P ’.

Figure 3(a) presents an outline of the proposed approach.
Note that the above classification has a direct correspon-
dence with the doxastic attitudes associated with answers
to DeLP queries. The final output presented to the user will

3An approach for inducing defeasible rules from association
rules can be found in (Governatori & Stranieri 2001).

4E.g contradictory facts may be found on the web; a simple
belief revision criterion is that those facts with newer timestamp
are preferred over older ones.
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Figure 3: (a) A generic framework for an Argument-Based Recommender System; (b) Enhanced search engine as a particular
instance of an Argument-Based Recommender System

be a sorted listL′ in which the elements ofL are ordered
according to their epistemic status with respect toP ’. This
process can be characterized in terms of the high-level algo-
rithm shown in Figure 2. We must remark that it is always
possible to ensure that the computation of warrant cannot
lead to contradiction (Garcı́a & Simari 2004): if there exists
a warranted argument〈A, h〉 on the basis of a programP,
then there is no warranted argument〈B,∼ h〉 based onP.

A Case Study: Solving Web Search Queries
In this section we will outline an example (adapted from
(Ches̃nevar & Maguitman 2004)) of how the proposed ap-
proach works in the context of solving web search queries.
In this context, the recommendation system aims at provid-
ing an enriched web search engine which categorizes results,
as outlined in Fig. 3(b). Thus, the resulting framework can
be seen as a particular instance of an argument-based rec-
ommendation system, where the user’s needs correspond to
strings to be searched on the web. The content-based engine
is a conventional search engine (e.g.GOOGLE). Final rec-
ommendation results for a queryq are prioritized according
to domain background knowledge and the user’s declared
preferences. It must be remarked that theARGUENET sys-
tem (Ches̃nevar & Maguitman 2004) is an instance of this
particular argument-based recommender framework.

Consider a journalist who wants to search for news arti-
cles about recent outbreaks of bird flu. A queryq containing
the termsnews, bird, andflu will return thousands of search
results. Our journalist may have some implicit knowledge to
guide the search, such as: (1) she always considers relevant
the newspaper reports written by Bob Beak; (2) she usually
considers relevant the reports written by trustworthy jour-
nalists; (3) Reports written by trustworthy journalists which
are out of date are usually not relevant; (4) Knowing that
a journalist has not faked reports provides a tentative rea-
son to believe he or she is trustworthy. By default, every
journalist is assumed to be trustworthy. (5) Japanese and

Thailandian newspapers usually offer a biased viewpoint on
bird flu outbreaks; (6) The“Japanese Times”(http://jpt.jp)
is a Japanese newspaper which she usually considers non bi-
ased; (7) Chin Yao Lin is known to have faked a report. Such
rules and facts can be modeled in terms of a DeLP program
P shown in Fig. 4. Note that some rules inP rely on “built
in” predicates computed elsewhere and not provided by the
user.5

For the sake of example, suppose that the above query
returns a list of search resultsL=[s1, s2, s3, s4]. Most of
these results will be web pages annotated with a number of
HTML or XML references (e.g. author, date, URL, etc.).
Such references can be encoded as a collection of DeLP facts
as shown in Fig. 4(b). Following the algorithm shown in
Fig. 2 we can now analyzes1, s2, s3 ands4 in the context of
a new DeLP programP ′=P∪Facts, whereFacts denotes
the set corresponding to the collection discussed above and
P corresponds to domain knowledge and the user’s prefer-
ence theory about the search domain.6 For eachsi, the query
rel(si) will be analyzed in light of this new programP ′.

Consider the case fors1. The search for an argument
for rel(s1) returns 〈A1, rel(s1)〉: s1 should be consid-
ered relevant since it corresponds to a newspaper article
written by Chin Yao Lin who is considered a trustworthy
author (note that every journalist is considered to be
trustworthy by default.) Here we have7 A1={ rel(s1)
−−≺author(s1, chin yao lin), trust(chin yao lin) ;
trust(chin yao lin) −−≺not faked news(chin yao lin)
}. Search for defeaters for〈A1, rel(s1)〉 will result in find-
ing a proper defeater〈A2,∼ rel(s1)〉: s1 is not relevant as

5E.g., determining the country of origin corresponding to a spe-
cific web domain can be found querying Internet directory services
such asWHOIS.

6In this particular context, note thatP = Pdomain ∪ Puser.
7For the sake of clarity, we use semicolons to separate elements

in an argumentA = {e1 ; e2 ; . . . ; ek }.



rel(X) −−≺ author(X, A), trust(A).

∼ rel(X) −−≺ author(X, A), trust(A),

outdated(X).

trust(A) −−≺ not faked news(A).

∼ rel(X) −−≺ address(X, Url), biased(Url).

biased(Url) −−≺ thailandian(Url).

biased(Url) −−≺ japanese(Url).

∼ biased(Url) −−≺ japanese(Url), domain(Url, D),

D = “jpt.jp”.

rel(X) ← author(X, bob beak).

oudated(X) ← date(X, D), getdate(Today),

(Today −D) > 100.

thailandian(X) ← [Computed elsewhere]

japanese(X) ← [Computed elsewhere]

domain(Url, D) ← [Computed elsewhere]

getdate(T ) ← [Computed elsewhere]

faked news(chin yao lin)←

author(s1, chin yao lin).

address(s1, “jpt.jp/...”).

date(s1, 20031003).

author(s2, jen doe).

address(s2, “news.co.uk/...”).

date(s1, 20001003).

author(s3, jane truth).

address(s3, “jpt.jp/...”).

date(s3, 20031003).

author(s4, bob beak).

address(s4, “mynews.com/...”).

date(s4, 20031003).

Figure 4: (a) DeLP program modeling preferences of a jour-
nalist; (b) Facts encoded from original web search results

it comes from a Japanese newspaper, which is by default as-
sumed to be biased about bird flu. In this case we haveA2={
∼ rel(s1) −−≺address(s1,“jpt.jp...”), biased (“jpt.jp...”)
; biased(“jpt.jp...”) −−≺ japanese (“jpt.jp...”) }. Note
that we also have an argument〈A3,∼ biased(“jpt.jp...”)〉
which defeats〈A2,∼ rel(s1)〉, reinstating〈A1, rel(s1)〉:
Usually articles from the “Japanese Times” are not biased.
In this case we haveA3={ ∼ biased(“jpt.jp...”)
−−≺ japanese(“jpt.jp...”), domain(“jpt.jp...”,
“jpt.jp”), (“jpt.jp” = “jpt.jp”) }. Finally, an-
other defeater for 〈A1, rel(s1)〉 is found, namely
〈A4, faked news(chin yao lin)〉, with A4 = ∅. No
other arguments need to be considered. The resulting
dialectical tree rooted in〈A1, rel(s1)〉 as well as its cor-
responding marking is shown in Figure 5a (left). The root
node is aD-node (defeated), and hence〈A1, rel(s1)〉 is not
warranted. Carrying out a similar analysis for∼ rel(s1)
results in the dialectical tree shown in Figure 5a (right).
The root node〈A2,∼ rel(s1)〉 is marked asD-node. There
are no other candidate arguments to consider; hences1 is
deemed asundecided.

The case ofs2 is analogous. The argument〈B1, rel(s2)〉
can be built, withB1={ rel(s2) −−≺author(s2, jen doe),
trust(jen doe) ; trust(jen doe) −−≺not faked
news (jen doe) }. This argument is defeated by a
proper defeater〈B2,∼ rel(s2)〉, with B2={∼ rel(s2)
−−≺author(s2, jen doe), trust(jen doe), outdated(s2) ;
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Figure 5: Dialectical trees associated with (a)〈A1, rel(s1)〉
and〈A2,∼ rel(s1)〉; (b) 〈B1, rel(s2)〉 and〈B2,∼ rel(s2)〉;
(c) 〈C1, rel(s3)〉 and (d)〈D1, rel(s4)〉

trust(jen doe) −−≺not faked news(jen doe)}. There are
no more arguments to consider, and〈B1, rel(s2)〉 is deemed
as non warranted (the resulting marked dialectical tree is
shown in Fig. 5b (left)). The analysis of∼ rel(s2) results in
an single argument. Consequently, its associated dialectical
tree has a single node〈B2,∼ rel(s2)〉 and it iswarranted.

Following the same line of reasoning used in the case of
s1 we can analyze the case ofs3. An argument〈C1, rel(s3)〉,
with C1={ rel(s3) −−≺author(s3, jane truth),
trust(jane truth) ; trust(jane truth) −−≺not faked
news(jane truth) } can be built supporting the conclu-
sion rel(s3) (a newspaper article written by Jane Truth
is relevant as she can be assumed to be a trustworthy
author). A defeater〈C2,∼ rel(s3)〉 will be found: s1

is not relevant as it comes from a Japanese newspaper,
which by default is assumed to be biased about bird flu.
Here we haveC2={ ∼ rel(s3) −−≺address(s3,“jpt.jp...”),
biased (“jpt.jp...”) ; biased(“jpt.jp...”) −−≺ japanese
(“jpt.jp...”) }. But this defeater in its turn is defeated by
a third argument〈C3, biased(s3)〉, as usually articles from
the “Japanese Times” are not biased. In this case we have
C3={ ∼ biased(“jpt.jp...”) −−≺ japanese(“jpt.jp...”),
domain(“jpt.jp...”, “jpt.jp”), (“jpt.jp” = “jpt.jp”) }.
The resulting dialectical tree for〈C1, rel(s3)〉 is shown in
Fig. 5c (left)). The original argument〈C1, rel(s3)〉 can be
thus deemed aswarranted.

Finally let us consider the case ofs4. There is an argu-
ment〈D1, rel(s4)〉 with D1 = ∅, asrel(s4) follows directly
from the strict knowledge inP. Clearly, there is no defeater
for an empty argument, and thereforerel(s4) is warranted.
The associated dialectical tree is shown in Fig. 5d.

Applying the criterion given in the algorithm shown in
Fig. 2, the initial list of search results [s1, s2, s3, s4]
will be shown as [s3, s4, s1, s2] (as 〈C1, rel(s3)〉 and
〈D1, rel(s4)〉 are warranted,〈A1, rel(s3)〉 is undecided and
〈B2,∼ rel(s2)〉 is warranted (i.e.,s2 is warranted to be a
non-relevant result).

Related work. Conclusions
In this paper we have outlined a computational framework
that provides a novel way of enhancing recommendation
technologies through the use of qualitative analysis using ar-
gumentation.We have shown how DeLP provides a suitable
tool for carrying on such analysis. It must be remarked that



an abstract machine for an efficient implementation of DeLP
has been developed, based on an extension of the WAM
(Warren’s Abstract Machine) for Prolog. Features concern-
ing an efficient implementation of DeLP and a comparison
to other logic programming formalisms have been recently
studied (Stolzenburget al. 2003; Ches̃nevaret al. 2003).

The proposed framework operates on top of a conven-
tional search engine, providing a powerful abstraction for
solving queries on the basis of the users’ information. Many
personalized Web recommender systems that operate on top
of Internet services have been proposed over the past years
(e.g., (Armstronget al. 1995; Mladenic 1996; Lieberman
1995; Pazzani, Muramatsu, & Billsus 1996)). Existing Web
recommender tools take into account the user’s interests to
rank or filter web pages, but differ from our proposal in that
they do not attempt to perform a qualitative analysis to war-
rant recommendations. There are currently many ambitious
projects to facilitate automatic qualitative reasoning by rely-
ing on the realization of the Semantic Web vision (Berners-
Lee 1998; Berners-Lee, Hendler, & Lassila 2001). Although
the concretization of such a vision is still underway, the use
of defeasible argumentation for qualitative analysis can also
be naturally integrated into such approaches.

One important issue in our proposal is the need to extract
relevant features from Web search results, encoding them
as part of a DeLP program. Although HTML tags associ-
ated to Web documents are not intended to convey a for-
mal semantics, these tags can be usefully exploited to ex-
tract meaningful content (Doorenbos, Etzioni, & Weld 1997;
Ashish & Knoblock 1997; Kushmerick, Weld, & Dooren-
bos 1997). On the other hand, the emergence of XML as
a standard for data representation on the Web contributes
to further simplify the above problem. In this context,
the approach proposed by Hunter (Hunter 2001; 2002a;
2002b) to represent semi-structured text through logical for-
mulas is particularly relevant for enhancing the capabilities
of the framework outlined in this paper. We think that in
future developments this process could be complemented
by additional techniques, such as defeasible rule discov-
ery (Governatori & Stranieri 2001) and specialized argu-
ment assistance tools (Verheij 2003).

We contend that the evolution of recommender systems
will lead to more efficient search environments, where both
quantitative and qualitative analysis will play important
roles. In this context, defeasible argumentation is a powerful
tool that can help fulfill this long-term goal.
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