
Argument-based User Support Systems
using Defeasible Logic Programming

Carlos I. Chesnevar^, Ana G. Maguitman^, and Guillermo R. Simari^

^ Artificial Intelligence Research Group - Department of Computer Science
Universitat de Lleida - C/Jaume n, 69 - E-25001 Lleida, SPAIN - Email: c i c@eps . u d l . e s

^ Computer Science Department - Indiana University
Bloomington, IN 47405-7104, USA - Email: anmaguit @cs . I n d i a n a . edu

^ Department of Computer Science and Engineering - Universidad Nadonal del Sur
Alem 1253, (8000) Bahia Blanca, ARGENTINA - Email: gr s @cs. u n s . edu . ar

Abstract. Over the last few years, argumentation has been gaining increasing
importance in several Al-related areas, mainly as a vehicle for facilitating ra­
tionally justifiable decision making when handling incomplete and potentially
inconsistent information. In this setting, user support systems can rely on argu­
mentation techniques to automatize reasoning and decision making in several
situations such as the handling of complex policies or managing change in dy­
namic environments. This paper presents a generic argument-based approach to
characterize user support systems, in which knowledge representation and infer­
ence are captured in terms of Defeasible Logic Progranmiing, a general-purpose
defeasible argumentation formalism based on logic progranmung. We discuss
a particular apphcation which has emerged as an instance of this approach ori­
ented towards providing user decision support for web search.

Keywords: argumentation, logic programming, user support systems, knowledge engineering

1 Introduction and motivatioiis

Critics and recommender systems (commonly known under the general term user sup­
port systems) have evolved in the last years as specialized tools to assist users in a
plethora of computer-mediated tasks by providing guidelines or hints [8]. Most crit­
ics and recommenders are based on machine learning and information retrieval algo­
rithms. The resulting systems typically provide suggestions based on quantitative evi­
dence (i.e. measures of similarity between objects or users), whereas the inference pro­
cess which led to these suggestions is commonly unknown (i.e. *black-box' metaphor).
Although the effectiveness of existing critics and recommenders is remarkable, they
still have serious limitations as they are unable to perform qualitative inference on the
suggestions they offer and are incapable of dealing with the defeasible nature of users'
preferences. A solution for tiiis problem can be provided by integrating existing user
support technologies with appropriate inferential mechanisms for qualitative reason­
ing.

Please use the following format when citing this chapter:
Chesnevar, Carlos, Maguitman, Ana, Simari, Guillermo, 2006, in IFIP Intemational Federation for
Information Processing, Volume 204, Artificial Intelligence Applications and Innovations, eds.
Maglogiannis, I., Karpouzis, K., Bramer, M., (Boston: Springer), pp. 61-69

62 Artificial Intelligence Applications and Innovations

In this context, defeasible argumentation frameworks [1,10] cx)nstitute an interest­
ing alternative, as they have matured in the last decade to become a sound setting to for­
malize commonsense, qualitative reasoning. In the last few years, particular attention
has been given to extensions of logic programming as a suitable framework for for­
malizing argumentation in a computationally attractive way. One of such approaches
that has been considerably successful is Defeasible Logic Programming (DeLP) [5], a
general-purpose argumentation formalism based on logic programming.

This paper presents a generic approach to characterize argument-based user sup­
port systemsy Le. user support systems in which recommendations are provided on the
basis of arguments. We describe a particular real-world application which emerged as
an instance of this approach oriented towards providing suitable decision support in
the context of web search.

2 Defeasible Logic Programming: overview

Defeasible logic programming (DeLP) [5] is a general-purpose defeasible argumenta­
tion formalism based on logic programming, intended to model inconsistent and po­
tentially contradictory knowledge.^ A defeasible logic program is a set P = (77, A)
of Horn-like clauses, where 11 and A stand for sets of strict and defeasible knowl­
edge, resp. The set U of strict knowledge involves strict rules of the form P <—
Qii' ",Qk and facts (strict rules with empty body), and it is assumed to be non-
contradictory? The set A of defeasible knowledge involves defeasible rules of the
form P -^ Qii"'iQkf which stands for "Qi, . . .Qk provide a tentative reason to
believe P." Strict and defeasible rules in DeLP are defined in terms of literals P, Qu
Q2, A literal is an atom or the strict negation (^) of an atom.

Deriving literals in DeLP results in the construction of arguments. An argument A
for a literal Q (denoted {Aj Q)) is a (possibly empty) set of ground defeasible rules
that together with the set U provide a SLD-like proof for a given Hteral Q, satisfying
the additional requirements of non-contradiction (Le., an argument should not involve
contradictory information) and minimality (ie., the set of defeasible information used
should be minimal). Note that arguments are obtained by a mechanism similar to the
usual query-driven SLD derivation from logic programmiag, performed by backward
chaining on both strict and defeasible rules; in this context a negated literal ~ P is
treated just as a new predicate name no-P. As a program V represents incomplete
and tentative information, conflicting arguments may arise. An argument {B, R) is a
counterargument for another argument {A, Q) if if there exists a sub-argument (C, L)
of {A, Q) {Le., C <Z A) such that tiiere exists a literal P e V verifying botii U U
{L, jR} h P and U U {L, R} h -iP. Intuitively, this means that both arguments
cannot be accepted simultaneously as they their joint acceptance leads to contradictory
conclusions. A preference criterion among arguments " >: " is used to determine when

•̂ For space reasons, we will restrict ourselves to a basic set of definitions and concepts which
make this paper self-contained. For more details, see [5,1].

^ Contradiction stands for deriving two complementary literals wrt strict negation (P and ~ P)
or default negation (P and not P).

Artificial Intelligence Applications and Innovations 63

an argument is a defeater for another argument. An argument {B^ R) defeats another
argument {A^ Q) if {B^ R)\&2L counterargument for (^, Q) and {B, R) >z {A, Q).

However, as defeaters are arguments, they may on its turn be defeated by other
arguments, which could on their turn be defeated by other arguments, and so on. This
pron^ts a recursive dialectical process rooted in a given argument {AQ, QQ), consider­
ing all their defeaters, defeaters for such defeat^s, and so on. The process can be char­
acterized in a tree-like structure called dialectical tree T{AO,QQ)> ^ which nodes are
arguments, the root node is the original argument at issue, and every children node de­
feats its parent node. Every path in a dialectical tree is a sequence [{AQ , QO) »{^i > Qi)»
{M, Q2), . . . , {An, Qn)] that can be thought of as an exchange of arguments between
two parties, di proponent (evenly-indexed arguments) and an opponent (oddly-indexed
arguments).̂ Each {Ai^Qi) is a defeater for the previous argument {Ai-uQi-i) rn.
the sequence, i > 0. A path is won by the proponent if its length is odd (/.e., the last ar­
gument in the path was given by the proponent, and no defeater followed it); otherwise
the path is lost. An argument (w4o, Qo) is warranted iff every path in T(^AQ,QQ) is won.
Given a DeLP program V — (U, A), a query Qo wrt P is solved by computing the
preceding tree-like structure. Three answers are distinguished: YES (there is at least
one warranted argument Ao for Qo); NO (there is at least one warranted argument ^0
for ^Qo); UNDECIDED (none of the previous cases hold).

3 Argument-based User Support Systems using DeLP
Our proposal is to model users' preference criteria in terms of a DeLP program built
on top of a traditional content-based search engine. Figure l(left) presents the basic
architecture of a generic argument-based user support system based on DeLP. In this
setting users preferences and background knowledge can be codified as facts and rules
in a DeLP program. These facts and rules can come from different sources. For exam­
ple, user's preferences could be entered explicitly by the user or could be inferred by
the system (e.g., by monitoring the user's behavior.) Additional facts and rules could
be obtained from other repositories of structured (e.g., databases) and semistructured
data (e.g., the Web.)

We will distinguish particular subsets in a DeLP program, representing different
elements in a user support system. For example, a DeLP program could take the form
^ = Vu8er U Vpooi U Vdomainy whcTC scts Vuser soid Vpooi represent preferences and
behavior of the active user and the pool of users, respectively. In the case of the active
user, his/her profile can be encoded as facts and rules in DeLP. In the case of the pool
of users, rule induction techniques are in order"̂ resulting in defeasible rules character­
izing trends and general preference criteria (e.g., normally if a given user likes X then
she also likes Y). The set Vdomain represents the domain (background) knowledge,
encoded using facts and rules in DeLP. Either proactively or upon a user's request, an
argument-based user support system triggers the search for suggestions. If needed, the
collected results could be codified as facts and added to the DeLP program. Finally,

^ Under certain constraints (e.g. avoiding cycles), all paths in a dialectical tree can be guaran­
teed to be finite. For details see [5].

^ An approach for inducing defeasible rules from association rules can be found in [6].

64 Artificial Intelligence Applications and Innovations

Fig. 1. A Generic Argument-Based User Support System based on DeLP (left); The ARGUENET
Framework as a particular instance for argument-based web search (right)

a DeLP interpreter is in charge of performing the qualitative analysis on the program
and to provide the final suggestions to the user.

Given tiie program V, a user's request is transformed into suitable DeLP queries,
from which different suggestions are obtained. For the sake of simplicity, we will as­
sume in our analysis that user suggestions will be DeLP terms associated with a distin­
guished predicate name rel (which stands for relevant or acceptable as a valid sugges­
tion). Using this formalization, suggestions will be classified into three sets, namely:
(a) S^ (warranted suggestions): those suggestions s< for which there exists at least one
warranted argument supporting rel{8i) based on V\ (b) S^ (undecided suggestions):
those suggestions s, for which there is no warranted argument for rel{si), neither
there is a warranted argument for ^ rel{3i) on the basis of T, and (c) S^ (defeated
suggestions): those suggestions Si such that there is a warranted argument supporting
~ rel{si) on the basis of V. Given a potential suggestion s<, the existence of a war­
ranted argument {Ai,rel{si)) built on die basis of the DeLP program V will allow
to conclude that Si should be presented as a final suggestion to the user. If results are
presented as a ranked list of suggestions, then warranted suggestions will be more rele­
vant than those which are undecided or defeated. Note that the above classification has
a direct correspondence with the doxastic attitudes associated with answers to DeLP
queries.

4 ARGUENET: Argument-based User Support for Web Search

Next, we will present a concrete instantiation of an argument-based user support sys­
tem: a recommendation tool for web search queries called ARGUENET [2]. In this con­
text, the intended user support aims at providing an enriched web search engine which
categorizes results, and where the user's needs correspond to strings to be searched

Artificial Intelligence Applications and Innovations 65

ALGORITHM Recoimnend_on_Query
INPUT: Query q, DeLP program T — ruaer U rpool U r domain
OUTPUT: ListLnety {recommendation results wrtV'}
Let L = [si, S2,... 5fct be the output of solving q

wrt content-based search engine sE
{L is the list of (the first k) results obtainedfrom query q via SE }
Vaearch = {factsencodingm/o(si), inf0(32)...info{8k)}
{info{si) stands for features associated with result Si }
V := R e v i s e (V U Vaearch).
{Revise stands for a belief revision operator to ensure consistency inV' }
Initialize 5*", iS", and 5** as empty sets.
{S"^, S"^, and S*^ stand for the set of results Si 's which are warranted as
relevant, undecided and warranted as non-relevant, respectively }
FOREVERYsiEL
DO
Solve query rel{8i) using DeLP program V'
W reltsi) is warranted THEN add s* to S"̂
ELSE

IF ̂ rel(si) is warranted THEN add 5* to 5"*
ELSE add Si to 5"̂

Return Recommendation Lnew = [s^j ^2^,..., s î, s?, S2,. . . , SJ2J ^i , . . . , 5̂ 3]
Fig. 2. Algorithm for solving queries ARGUENET

on the web. The search engine is a conventional search engine (e.g., GOOGLE). Final
recommendation results for a query q are prioritized according to domain background
knowledge and the user's declared preferences. Figure 1 (right) illustrates the architec­
ture of an argument-based news reconmiender system.

Given a user query 9, it will be given as an input to a traditional content-based
web search engine, returning a list of search results L. If required, the original query
q could be suitably re-formulated in order to improve the quality of the search results
to be obtained. In the list L we can assume that Si is a unique name characterizing a
piece of information info{si), in which a number of associated features (meta-tags,
filename, URL, etc.) can be identified. We assume that such features can be identified
and extracted from info{si) by some specialized tool, as suggested by Hunter [7] in
his approach to dealing with structured news reports. Such features will be encoded
as a set Vsearch of new DeLP facts, extending thus the original program V into a new
program V. A special operator Revise deals with possible inconsistencies found in
Vsearch with rcspcct to V'y eusuriug V U Vsearch is uot Contradictory.̂ Following
the algorithm shown in Fig. 2 we can now analyze L in the context of a new DeLP
program V'^V U Facts j where Facts denotes the set corresponding to the collection
discussed above and V corresponds to domain knowledge and the user's preferences
about the search domain.̂ For each Si, the query rel{si) will be analyzed in light of
the new program V'. Elements in the original list L of content-based search results
will be classified into three sets of warranted, undecided, and defeated results. The
final output presented to the user will be a sorted list L' in which the elements of L are

^ For example, contradictory facts may be found on the web. A simple belief revision criterion
is to prefer the facts with a newer timestamp over the older ones.

^ In this particular context, note that V = Vdomain U Vuaer-

66 Artificial Intelligence Applications and Innovations

rel{X) —<
~ rellx) -^
tru8t(A) —^
~ reZ(X) —<

biasediUrl) —<
biaaediUrl) ~^

~ biasedlUrl) ~^
rel{X) <-

oudatedlx) ^

thailandian{X) +—
japane3e{X) •—

domain{Url, D) <—
getdate{T) <-

author{XJ A), trust(A).
authorlx, A), truat(A), outdated{X).
not faked.new8(A).
addressiX, Url), hiased{Url).
thailandian(Url).
japane8e(Url).
domain{Url, D), D = ^^jpt.jp'^
author (X, bobJ}eak).
date(X, D), getdate(Today),
(Today - D) > 100.
[Computed elsewhere]
[Computed elsewhere]
[Computed elsewhere]
[Computed elsewhere]

author{8i, chinjyao Jin).
acWre«a(ai, "jpt.jp/...").
ciate(8i, 20031003).
author {82, jen.doe).
addre88{82, "new8.co.uk/...").
ctate(8i, 20001003).
author{83, jane.truth).
ocWresa(s3, "jpt.jp/"").
cfate(83, 20031003).
author{8^, bobJbeak).
addre88(84, "mynew8.com/...").
date(s4,20031003).

faked-new8(chinjyaoJin) *—

Fig. 3. (a) DeLP program modeling preferences of a journalist; (b) Facts encoded from original
web search results

ordered according to their epistemic status with respect to V. Fig. 2 outlines a high
level algorithm, which will be exemplified in the case study shown next.

Example L Consider a journalist who wants to search for news articles about recent outbreaks
of bird flu. A query q containing the terms news, bird, and flu will return thousands of search
results. Our journalist may have some implicit knowledge to guide Ihe search, such as: (1) she
always considers relevant the newspaper reports written by Bob Beak; (2) she usually consid­
ers relevant the reports written by trustworthy journalists; (3) Reports written by trustworthy
journalists which are out of date are usually not relevant; (4) Knowing that a journalist has not
faked reports provides a tentative reason to beheve he or she is trustworthy. By default, every
journalist is assumed to be trustworthy. (5) Japanese and Thailandian newspapers usually offer
a biased viewpoint on bird flu outbreaks; (6) The "Japanese Times" (http://jptjp) is a Japanese
newspaper which she usually considers non biased; (7) Chin Yao Lin is known to have faked a
report Such rules and facts can be modelled in terms of a DeLP program V shown in Fig. 3(a).
Note that some rules in V rely on "built in" predicates computed elsewhere and not provided by
the user.̂

Fbr the sake of example, suppose that the above query returns a list of search results L=\.s\,
S2, 53, 54]. Most of these results will be associated with XML or HTML pages, containing a
number of features (e.g. author, date, URL, etc.). Such features can be encoded as discussed
before in a collection of DeLP facts as shown in Fig. 3(b). We can now analyze si , 52,53 and 54
in the context of the user's preference theory about the search domain by considering the DeLP
program V'=VUFactSy where Facts denotes the set corresponding to the collection of facts in
Fig. 3(b). For each 5*, the query rel{si) will be analyzed wrt this new program V'.

Consider the case for si . The search for an argument for rel(si) returns the argument
(^i,re/(si)>: si should be considered relevant since it corresponds to a newspaper article
written by Chin Yao Lin who is considered a trustworthy author (note that every journal­
ist is considered to be trustworthy by default.) In this case we have the argument? Ai={
rel{si) —<authcfr(cijChinjyaoJin)y trust(chinjyaoJin) ; trust{chinjyao2in) —<not
fakedjnews{chin-yax)2in) }. Search for defeaters for argument {Ai^rel{sx)) will result
in a defeater {^2,^^ re/(si)}: si is not relevant as it comes from a Japanese newspaper.

'̂ E.g., determining the country of origin corresponding to a specific web domain can be found
querying Internet directory services such as WHOIS.

^ For the sake of clarity, semicolons separate elements in an argument ̂ = {ei ; 62 ; . . . ; e^ }.

Artificial Intelligence Applications and Innovations 67

^ 1

/ \
A2 Ai

M
(a)

A2

1
Ai

Bi

1
B2

B2

(b)

Ci

1
C2

C3

(c)

Vi

(d)

Fig. 4. Dialectical trees associated with (a) (^i,reZ(si)> and {A2j^ rel(si))\ (]b)
(Bi,rel{s2)) and {B2, -̂ reZ(52)>; (c) {Ci,rel{s3)} and (d) {X>i, re/(54)>

which is assumed to be biased about bird flu. In this case we have the argument ^2={ ^
rel(ci) —< address(ci, ^^jpt.jp..."), biased (^^jpt.jp..."); bia8ed{ ^^jpt.jp...") —< Japanese
(̂ ĵpt'jp- ••")}• Note that we also have an argument {A^, ~ biased{ ^^jpt.jp...")} which defeats
{A2, ~ reZ (51)>: Usually articles from the "Japanese Times" are not biased. In this case we have
A3={ - Ua8ed{''jpt.jp..:')-<domain{''jpt.jp..:\''jpt.jp'% {''jpt.jp'' = "jpt.jp") }.R-
nally, another defeater for {Ai^rel{si)) is found, namely (A4, fakedjnew8{chin.yaoJin))y
with ^ = 0. No other arguments need to be considered. The resulting dialectical tree rooted
(^1, rel{si)) is shown in Fig 4a (left). Not aU paths have odd length, and hence (^1, rei(si))
is not warranted. Carrying out a similar analysis for ^ rel(si) results in the dialectical tree
shown in Figure 4a (right). A similar situation results. There are no other candidate arguments
to consider; hence si is deemed as undecided.

The case of 52 is analogous. The argument {B\^rel{s2)) can be built, with 5 i={ rel{s2)
—<author{s2^)i trust(jen.doe) ; trust(jen.oldie) —<not faked- news (Jen^doe) } .
This argument is defeated by (B2, ̂ re/(52)), with 52={'^ rel{s2) —< author(s2 Jen.doe)y
trust(jenjdoe), outdated{s2); trust(Jen.doe) —< not faked.news{jen.doe)}. There are
no more arguments to consider, and (5i, r6^(52)) is deemed as non warranted ((Fig. 4b (left)).
The analysis of ^ re/(52) results in a single argument. Thus, its associated dialectical tree has
a single node {B2, ~ reZ(52)}, the only possible path has an odd length, and it is warranted.

Following the same line of reasoning used in the case of si we can analyze the case of 53.
An argument (Ci, reZ(s3)) can be built supporting the conclusion rel(s3) (a newspaper article
written by Jane Truth is relevant as she can be assumed to be a trustworthy author). A defeater
(C2, "^ rel(s3)} will be found: 5i is not relevant as it comes from a Japanese newspaper, which
by default is assumed to be biased about bird flu. But this defeater in its turn is defeated by
a third argument (C3, 62056^(53)). The resultmg dialectical tree for (Ci, re/(33)) is shown in
Fig. 4c (left)). The original argument (Ci, re/(53)) can be thus deemed as warranted. Finally let
us consider the case of S4. There is an argument {Vi, re/(54)) with 2>i = 0, as re/(54) follows
directly from the strict knowledge in V. Qearly, there is no defeater for an empty argument
(as no defeasible knowledge is involved). Hence re/(54) is warranted (see dialectical tree in
Fig.4d).

Applying the criterion given in the algorithm shown in Fig. 2, the initial Ust of search re­
sults [si, 52, 53, SA] will be shown as [53, S4, 5i, S2] (as (Ci,re/(s3)) and {Vi,rel{s4.)) are
warranted, {Ai, re/(s3)) is undecided and (^2, ~ re/(52)) is warranted (i.e., 52 is warranted to
be a non-relevant result).

68 Artificial Intelligence Applications and Innovations

S Related work. Conclusions

Several kinds of user support systems that operate on top of Internet services have
been proposed over the past years. In the case of web-based recommender systems
(e.g. SurfLen [4], and Quickstep [9], among others) the usual approach involves tak­
ing into account the user's interests -either declared by the user or conjectured by the
system- to rank or filter web pages. However such approaches differ from our pro­
posal in that they do not attempt to perform a qualitative analysis to warrant recom­
mendations. In [12] a number of interesting argument assistance tools arc presented.
Even though there is a sound logical framework underlying this approach, the focus is
rather restricted to legal reasoning, viewing the application of law as dialectical the­
ory construction and evaluating alternative ways of representing argumentative data. In
contrast, our analysis is oriented towards characterizing more generic argument-based
user support systems.

ID this paper we have presented a novel approach towards the development of user
support systems by enhancing recommendation technologies through the use of qual­
itative, argument-based analysis. In particular, we have shown that DeLP is a suitable
computational tool for carrying on such analysis in a real-world application for in­
telligent web search, providing thus a tool for higher abstraction when dealing with
users' information needs. Preliminary experiments on the use of ARGUENET were
performed on the basis of a prototype. However, it must be remarked that these ini­
tial experiments only serve as a "proof of concept" prototype, as thorough evaluations
are still being carried out As performing defeasible argumentation is a computation­
ally complex task, an abstract machine called JAM (Justification Abstract Machine)
has been specially developed for an efficient implementation of DeLP [5], allowing to
solve queries and computing dialectical trees very efficiently. The JAM provides an
argument-based extension of the traditional WAM (Warren's Abstract Machine) for
PROLOG. A full-fledged implementation of DeLP is available online,^ including fa­
cilities for visualizing arguments and dialectical trees. Several other features leading
efficient DeLP implementations have also been recently studied, in particular those
related to comparing conflicting arguments by specificity [11] as a syntax-based pref­
erence criterion and pruning dialectical trees to speed up the argumentative inference
procedure [3].

Current trends in user support system technologies show clearly that the combina­
tion of quantitative and qualitative analysis of user preferences wiU play a major role
in the future. In this context, we think that defeasible argumentation techniques wiU
constitute a powerful tool to make inference in user support systems more reliable and
and user-friendly. Our approach intends to be a first step to reach this long-term goal.

Acknowledgements: This research work was supported by Projects TIC2003-00950, TIN 2004-
07933-C:X)3-03, by Ram6n y Cajal Program (MCyr, Spain) by CONICET (Argentina), and by
Agenda Nacional de Promocidn Cientifica y Tecnol6gica (PICT 2002 No. 13.096).

'See http://lidia.cs.uns.edu.ar/DeLP

Artificial Intelligence Applications and Innovations 69

References

1. C. Chesfievar, A. Maguitman, and R. Loui. Logical Models of Argument ACM Computing
Surveys, 32(4):337-383, December 2000.

2. C. Chesfievar, A. Maguitman, and G. Simari. Argument-Based Critics and Recommenders:
A Qualitative Perspective on User Support Systems. Data and Knowledge Engineering (to
appear), 2005.

3. C. Chesfievar, G. Simari, and L. Godo. Computing dialectical trees efficiently in possibilis-
tic defeasible logic programming. LNAI Springer Series Vol 3662 (Proc. of the 8th Intl.
Cortf. on Logic Programming and Nonmonotonic Reasoning IPNMR 2005), pages 158-
171, September 2005.

4. Xiaobin Fu, Jay Budzik, and Kristian J. Hammond. Mining navigation history for recom­
mendation. In Intelligent User Interfaces, pages 106-112,2000.

5. A. Garcfa and G, Simari. Defeasible Logic Programming: An Argumentative Approach.
Theory and Practice of Logic Programming, 4(1):95-138,2004.

6. G. Govematori and A. Stranieri. Towards the application of association rules for defeasible
rules discovery. In Ugal Know. & Ir^. Sys., pages 63-75. JURIX, lOS Press, 2001.

7. Anthony Hunter. Hybrid argumentation systems for structured news reports. Knowledge
Engineering Review, pages 295-329,2001.

8. Joseph A. Konstan. Introduction to recommender systems: Algorithms and evaluation. ACM
Trans. Inf Syst., 22(l):l-4,2004.

9. S. Middleton, D. DeRoure, and N. Shadbolt Capturing knowledge of user preferences:
Ontologies in recommender systems. InPwc. ACM K-CAP'Ol, Canada, 2001. ACM Press.

10. H. Prakken and G. Vreeswijk. Logical Systems for Defeasible Argumentation. In D. Gab-
bay and RGuenther, editors. Handbook of Phil. Logic, pages 219-318. Kluwer, 2002.

11. F. Stolzenburg, A. Garcia, C, Chesfievar, and G. Simari. Computing Generalized Specificity.
JANCL, 13(1):87-113, 2003.

12. Bart Verheij. Artificial argument assistants for defeasible argumentation. Artif. Intell,
150(l-2):291-324,2003.

