
An Abstract Presentation of Dialectical Explanations in
Defeasible Argumentation

Alejandro J. Garćıa, Carlos I. Ches̃nevar, Nicoĺas D. Rotstein, and Guillermo R. Simari

Artificial Intelligence Research Group
Department of Computer Science and Engineering

Universidad Nacional del Sur, Av.Alem 1253, (8000) Bahı́a Blanca, ARGENTINA
Consejo Nacional de Investigaciones Cientı́ficas y T́ecnicas (CONICET)

e-mail:{ajg, cic, ndr, grs}@cs.uns.edu.ar

Abstract. Abstract argumentation frameworks have played a major role as a way
of understanding argument-based inference, resulting in different argument-based
proof procedures. We will provide an abstract characterization of thewarrant con-
struction in the context of Skeptical Argumentation Frameworks. Often in the lit-
erature an argument is regarded as an explanation as well as a form ofsupport
for a claim, and this argument is evaluated to decide if the claim is accepted.
The concept of explanation has received attention from different areas in Artifi-
cial Intelligence, particulary in the Knowledge-Based Systems community.Only
a few of them consider explanations in relation with argument systems. In this
paper, we propose a type of explanation that attempts to fill this gap providing a
perspective from the point of view of argumentation systems.

1 Introduction and Motivations

Lately, interest in argumentation has expanded at increasing pace, driven in part by the-
oretical advances but also by successful demonstrations ofa substantial number of prac-
tical applications, such as multiagent systems [17, 1], legal reasoning [18], knowledge
engineering [4], and e-government [2], among many others. In this context, abstract
argumentation frameworks [9] have played a major role as a way of understanding
argument-based inference, resulting in different argument-based semantics. The final
goal of such semantics is to characterize which are the rationally justified (orwar-
ranted) beliefs associated with a given set of arguments.

Dialectical analysis in argumentation involves the exploration of anargument search
spacein order to provide a proof-theoretic characterization of an argument-based se-
mantics. Dialectical proof procedures provide the mechanism for performing compu-
tations of warranted arguments, traversing this argument search space by generating
tree-like structures (called argument trees [3] or dialectical trees [11, 7] in the litera-
ture). We will provide an abstract characterization of the warrant construction in the
context ofSkeptical Argumentation Frameworks.

From another point of view, often in the literature an argument is regarded as an
explanation for a claim that is represented by a literal. That is, the claim which is be-
ing explained is put under discussion, and only after evaluating its support it will be
accepted or not. The role of explanations has received attention from several areas of

18 A.J. Garćıa, C.I. Ches̃nevar, N.D. Rotstein, and G.R. Simari

Artificial Intelligence –especially in the expert systems community [15, 20, 12]. A few
of them consider explanations in relation with argument systems [16]. In belief revision,
the role of explanations has also been studied [10]: new knowledge is accompanied by
an explanation, which is used (when needed) to resolve inconsistency with the agent’s
current beliefs. The piece of knowledge having the “best” explanation is the one that
prevails, and is accepted as a new belief.

We will focus our discussion on those explanations that givethe necessary infor-
mation to understand the warrant status of a literal. Since we consider only skeptical
argumentation systems based on a dialectical proof procedure, we studydialectical ex-
planations(from now on,δ-Explanations). Although we consider arguments as an ex-
planation for a literal, we are interested in obtaining the complete set of dialectical trees
that justify the warrant status of that literal. We show howδ-Explanations can be a use-
ful tool to comprehend and analyze the interactions among arguments, and for aiding
in the encoding and debugging of the underlying knowledge base. Several examples,
generated with an implemented system that returns, for a given query, both the answer
and the associatedδ-Explanation, are given throughout the paper.

An interesting review about explanations in heuristic expert systems is given in [15],
which offers the following definition: “...explainingconsists inexposing somethingin
such a way that it isunderstandablefor the receiver of the explanation –so that he/she
improves his/her knowledge about the object of the explanation– andsatisfactoryin
that it meets the receiver’s expectations.” In our approach, we explain throughexpos-
ing the whole set of dialectical trees related to the queried literal. This information is
understandablefrom the receiver’s point-of-view, because all the arguments built, their
statuses (i.e., defeated/undefeated), and their interrelations are explicitly shown. This
type of information would besatisfactoryfor the receiver, because it contains all the
elements at stake in the dialectical analysis that supportsthe answer.

An empirical analysis about the impact of different types ofexplanations in the
context of expert systems is given in [20] which offers a typology that includes: 1)
trace: a record of the inferential steps that led to the conclusion;2) justification: an
explicit description of the rationale behind each inferential step; and 3)strategy:a high-
level goal structure determining the problem-solving strategy used. In this typology, the
authors claim that their empirical analysis have shown thatthe most useful type of
explanation is “justification”. Ourδ-Explanations match both the “justification” and the
“strategy” types. That is,δ-Explanations give not only the strategy used by the system
to achieve the conclusion, but also the rationale behind each argument supporting that
conclusion as it is clearly stated in the corresponding dialectical tree.

We agree with [16], in that“argumentation and explanation facilities in knowledge-
based systems should be investigated in conjunction”. Therefore, we propose a type of
explanation that attempts to fill the gap in the area of explanations in argument systems.
Our approach is to provide a higher-level explanation in a way that the whole context
of a query can be revealed. The examples given will stress this point.

The rest of this paper is structured as follows. Next, we willpresent the basic ideas
of an abstract argumentation framework with dialectical constraints, which includes
several concepts common to most argument-based formalisms. Then, we will present
an abstract characterization of explanation along with a concrete reification based on
Defeasible Logic Programming (DELP).

An Abstract Presentation of Dialectical Explanations in Defeasible Argumentation 19

2 An Abstract Framework with Dialectical Constraints

Abstract argumentation frameworks [9, 13] are formalisms for modelling defeasible ar-
gumentation [19, 5] in which some components remain unspecified. In this paper we
are concerned with the study of warrant computation in argumentation systems, with
focus on skeptical semantics for argumentation. As a basis for our analysis we will use
an abstract argumentation framework (following Dung’s seminal approach to abstract
argumentation [9]) enriched with the notion ofdialectical constraint, which will allow
us to model distinguished sequences of arguments. The resulting, extended framework
will be called anargumentation theory.

Definition 1 (Argumentation framework). [9] An argumentation frameworkΦ is
a pair 〈Args, R〉, whereArgs is a finite set of arguments andR is a binary relation be-
tween arguments such thatR ⊆ Args×Args. The notation(A,B) ∈ R (or equivalently
ARB) means thatA attacksB.

Given an argumentation frameworkΦ = 〈Args, R〉, we will write LinesΦ to de-
note the set of all the singleton sequences[A] with A ∈ Args and all possible finite
sequences of arguments[A0, . . . ,Ak], with k ≥ 1, such that for any pair of arguments
Ai,Ai+1 it holds thatAi+1 R Ai, for i = 0 to k. Argumentation lines define a domain
onto which different constraints can be defined. As such constraints are related to se-
quences which resemble an argumentation dialogue between two parties, we call them
dialectical constraints. Formally:

Definition 2 (Dialectical Constraint). LetΦ = 〈Args, R〉 be an argumentation frame-
work. A dialectical constraintC in the context ofΦ is any functionC : LinesΦ →
{True, False}. A given argument sequenceλ ∈ LinesΦ satisfiesC in Φ whenC(λ) =
True.

An argumentation theory is defined by combining an argumentation framework with a
particular set of dialectical constraints. Formally:

Definition 3 (Argumentation Theory). An argumentation theoryT (or just theory) is
a pair (Φ,DC), whereΦ is an argumentation framework, andDC = {C1,C2, . . . ,Ck}
is a finite (possibly empty) set ofdialectical constraints.

Given a theoryT = (Φ,DC), the intended role ofDC is to avoidfallaciousrea-
soning by imposing appropriate constraints on argumentation lines to be considered ra-
tionally acceptable. Such constraints are usually defined on disallowing certain moves
which might lead to fallacious situations. Typical constraints to be found inDC are
non-circularity (repeating the same argument twice in an argumentation lineis forbid-
den),commitment(parties cannot contradict themselves when advancing arguments),
etc. It must be noted that a full formalization for dialectical constraints is outside the
scope of this work. We do not claim to be able to identify everyone of such constraints
either, as they may vary from one particular argumentation framework to another; that
is the reason whyDC is included as a parameter inT .1

1 In this respect a similar approach is adopted in [14], where different characterizations of con-
straints give rise to different logic programming semantics.

20 A.J. Garćıa, C.I. Ches̃nevar, N.D. Rotstein, and G.R. Simari

2.1 Argumentation Lines

As already discussed before, argument games provide a useful form to characterize
proof procedures for argumentation logics.Such games model defeasible reasoning as a
dispute between two parties (ProponentandOpponentof a claim), who exchange argu-
ments and counterarguments, generatingdialogues. A propositionQ is provably justi-
fied on the basis of a set of arguments if its proponent has awinning strategyfor an ar-
gument supportingQ, i.e. every counterargument (defeater) advanced by the Opponent
can be ultimately defeated by the Proponent. Dialogues in such argument games have
been given different names (dialogue lines, argumentationlines, dispute lines, etc.). A
discussion on such aspects of different logical models of argument can be found in [5,
19]. The abstract framework presented in this section is based on the results presented
in [6] and [8].

Definition 4 (Argumentation Line). LetT be an argumentation theory. Anargumen-
tation lineλ in T is any finite sequence of arguments[A0,A1, . . . ,An] such that every
Ai attacksAi−1, for 0 < i ≤ n. If A0 is the first element inλ, we will also say thatλ
is rooted inA0. We will also write| λ | = n to denote thatλ hasn arguments; we will
also say that thelengthof λ is n.

Definition 5 (Initial Argumentation Segment). Let T be an argumentation theory
and letλ = [A0,A1, . . . ,An] be an argumentation line in T. Thenλ′ = [A0,A1, . . . ,Ak]
will be called aninitial argumentation segmentin λ of lengthk, k ≤ n, denoted⌊λ⌋k.
Whenk < n we will say thatλ′ is a properinitial argumentation segment inλ. We
will use the terminitial segmentto refer to initial argumentation segments when no
confusion arises.

Example 1.Consider a theoryT = (Φ,DC), with DC = ∅, where the setArgs is
{A0, A1, A2, A3, A4 }, and assume that the following relationships hold:A1 attacks
A0,A2 attacksA0,A3 attacksA0,A4 attacksA1. Three different argumentation lines
rooted inA0 can be obtained, namely:λ1 = [A0, A1, A4], λ2 = [A0, A2], λ3 = [A0,
A3]. In particular,⌊λ1⌋2 = [A0,A1] is an initial argumentation segment inλ1.

Example 2.Consider a theoryT ′ = (Φ,DC) where the setArgs is {A0, A1 }, and
assume that the following relationships hold:A0 attacksA1, andA1 attacksA0. An
infinite number of argumentation lines rooted inA0 can be obtained (e.g.λ1 = [A0],
λ2 = [A0,A1], λ3 = [A0,A1,A0], λ4 = [A0,A1,A0,A1], etc.).

Remark 1.Note that from Def. 4, given an argumentation line[A0, A1, A2, . . . ,An]
every subsequence[Ai,Ai+1, . . .Ai+k] with 0 ≤ i ≤ n − k is also an argumentation
line. In particular, every initial argumentation segment is also an argumentation line.

Intuitively, an argumentation lineλ is acceptable iff it satisfies every dialectical
constraint of the theory it belongs to. Formally:

Definition 6. Given an argumentation theoryT = (Φ,DC), an argumentation lineλ
is acceptablewrt T iff λ satisfies everyc ∈DC.

An Abstract Presentation of Dialectical Explanations in Defeasible Argumentation 21

In what follows, we will assume that the notion of acceptability imposed by dialec-
tical constraints is such that ifλ is acceptable wrt a theoryT = (Φ,DC), then any
subsequence ofλ is also acceptable.

Assumption 1 If λ is an acceptable argumentation line wrt a theoryT = (Φ,DC),
then any subsequence ofλ is also acceptable wrtT .

Example 3.Consider the theoryT ′ in Example 2, and assume thatDC={ Repetition
of arguments is not allowed}. Thenλ1 andλ2 are acceptable argumentation lines in
T ′, whereasλ3 andλ4 are not.

Definition 7 (λ′ extendsλ). Let T be an argumentation theory, and letλ and λ′ be
two argumentation lines inT . We will say thatλ′ extendsλ in T iff λ = ⌊λ′⌋k, for some
k < | λ′ |, that is,λ′ extendsλ iff λ is a proper initial argumentation segment ofλ′.

Definition 8. Let T be an argumentation theory, and letλ be an acceptable argumen-
tation line inT . We will say thatλ is exhaustiveif there is no acceptable argumentation
line λ′ in T such that| λ | < | λ′ |, and for somek, λ = ⌊λ′⌋k, that is, there is noλ′

such thatλ′ extendsλ. Non-exhaustive argumentation lines will be referred to aspartial
argumentation lines.

Example 4.Consider the theoryT presented in Example 1. Thenλ1, λ2 andλ3 are
exhaustive argumentation lines whereas⌊λ1⌋2 is a partial argumentation line. In the
case of the theoryT ′ in Example 2, the argumentation lineλ2 extendsλ1. Argumenta-
tion line λ2 is exhaustive, as it cannot be further extended on the basis of T ′ with the
dialectical constraint introduced in Example 3.

Definition 9. Given a theoryT , a setS = {λ1, λ2, . . . , λn} of argumentation lines
rooted in a given argumentA, denotedSA, is called abundle setwrt T iff there is no
pair λi, λj ∈ SA such thatλi extendsλj .

Example 5.Consider the theoryT = (Φ,DC) from Example 1, and the argumentation
linesλ1, λ2, andλ3. ThenSA0

= {λ1, λ2, λ3} is a bundle set wrtT .

2.2 Dialectical Trees

A bundle setSA is a set of argumentation lines rooted in a given argumentA. Such set
can be thought of as a tree structure, where every line corresponds to a branch in the
tree. Formally:

Definition 10 (Dialectical tree).Let T be a theory, and letA be an argument inT ,
and letSA = {λ1, λ2, . . . , λn} be an acceptable set of argumentation lines rooted in
A. Thedialectical treerooted inA based onSA (denotedTA) is a tree-like structure
defined as follows:

1. The root node ofTA isA.

22 A.J. Garćıa, C.I. Ches̃nevar, N.D. Rotstein, and G.R. Simari

2. LetF={tail(λ), for everyλ ∈ SA}, andH={head(λ), for everyλ ∈ F}.2

If H = ∅ thenTA has no subtrees.
Otherwise, ifH = {B1, . . . ,Bk}, then for everyBi ∈ H, we define

getBundle(Bi) = {λ ∈ F | head(λ) = Bi}

We putTBi
as an immediate subtree ofA, whereTBi

is a dialectical tree based on
getBundle(Bi).

We will writeTree
A

to denote the family of all possible dialectical trees basedonA.

We will represent asTree
T

the family of all possible dialectical trees in the theoryT .

Example 6.Consider the theoryT = (Φ,DC) from Example 1, and the acceptable set
SA0

from Example 5. Fig. 1(a) shows the associated exhaustive dialectical treeTA0
.

The above definition shows how to build a dialectical tree from a bundle set of argu-
mentation lines rooted in a given argument. It is important to note that the “shape” of the
resulting tree will depend on the order in which the subtreesare attached. Each possi-
ble order will produce a tree with a different geometric configuration. All the differently
conformed trees are nevertheless “equivalent” in the sensethat they will contain exactly
the same argumentation lines as branches from its root to itsleaves. This observation is
formalized by introducing the following relation which canbe trivially shown to be an
equivalence relation.

Definition 11. Let T be a theory, and letTree
A

be the set of all possible dialectical

trees rooted in an argumentA in theoryT . We will say thatTA is equivalent toT ′
A,

denotedTA ≡τ T
′
A iff they are obtained from the the same bundle setSA of argumen-

tation lines rooted inA.

Given an argumentA, there is a one-to-one correspondence between a bundle set
SA of argumentation lines rooted inA and the corresponding equivalence class of
dialectical trees that share the same bundle set as their origin (as specified in Def. 10). In
fact, a dialectical treeTA based onSA is justan alternative wayof expressing the same
information already present inSA. Each member of an equivalence class represents
a different way in which a tree could be built. Each particular computational method
used to generate the tree from the bundle set will produce oneparticular member on
the equivalence class. In that manner, the equivalence relation will represent a tool for
exploring the computational process of warrant and as we will see later, trees provide a
powerful way of conceptualize the computation of warrantedarguments. Next, we will
define mappings which allow to re-formulate a bundle setSA as a dialectical treeTA
and viceversa.

Definition 12 (Mapping T). LetT be an argumentative theory, and letSA be a bundle
set of argumentation lines rooted in an argumentA of T . We define the mapping

T : ℘(LinesA) \ {∅} → TreeA

as T(SA) =def TA, whereLinesA is the set of all argumentation lines rooted inA,
TreeA is the quotient set ofTreeA by≡τ , andTA denotes the equivalence class ofTA.

2 The functionshead(∆) andtail(∆) have the usual meaning in list processing, returning the
first element in a list and the list formed by all elements except the first, respectively.

An Abstract Presentation of Dialectical Explanations in Defeasible Argumentation 23

Proposition 1. For any argumentA in an argumentative theoryT , the mappingT is a
bijection.3

As the mappingT is a bijection, so that we can define also the inverse mapping
S =def T

−1 which allow us to determine the acceptable set of argumentation lines
corresponding to an arbitrary dialectical tree rooted in anargumentA. In what follows,
we will use indistinctly aset notation(an acceptable bundle set of argumentation lines
rooted in an argumentA) or atree notation(a dialectical tree rooted inA), as the former
mappingsS andT allow us to go from any of these notation to the other.

Proposition 2. LetT be an argumentation theory, and letSA be an acceptable bundle
set of argumentation lines rooted in a given argumentA, SA = {λ1, λ2, . . . , λn}. Let
S′A = {λ′1, . . . , λ

′
m}, m ≤ n, be a set of initial argumentation segments, where every

λ′i = ⌊λi⌋ki
, for someki ≤ | λi |, i ≤ m. Let

S′′ = S′A \ {λ ∈ S′A | there existsλ′ ∈ S′A andλ′ extendsλ}. (1)

ThenS′′ is also an acceptable set of argumentation lines rooted inA.

The following proposition shows that dialectical trees canbe thought of as compo-
sitional structures, in the sense that any subtreeT ′

A of a dialectical treeTA is also a
dialectical tree.

Proposition 3. LetT be a theory, andTA a dialectical tree inT . Then it holds that any
subtreeT ′

A in TA rooted inA is also a dialectical tree wrtT .

2.3 Acceptable dialectical trees

The notion of acceptable argumentation line will be used to characterize acceptable
dialectical trees, which will be fundamental as a basis for formalizing the computation
of warranted argumentsin our setting.

Definition 13 (Acceptable dialectical tree).Let T be a theory, a dialectical treeTA
in T is acceptable iff every argumentation line in the associated bundle setS(TA) is
acceptable. We will distinguish the subsetATreeA (resp.ATreeT) of all acceptable
dialectical trees inTreeA (resp.TreeT).

As acceptable dialectical trees are a subclass of dialectical trees, all the properties
previously shown apply also to them. In the sequel, we will just write “dialectical trees”
to refer to acceptable dialectical trees, unless stated otherwise.

Definition 14 (Exhaustive Dialectical tree).A dialectical treeTA will be calledex-
haustiveiff it is constructed from the setSA of all possible exhaustive argumentation
lines rooted inA, otherwiseTA will be calledpartial.

Besides, the exhaustive dialectical tree for any argumentA can be proven to be
unique (up to an equivalence).

3 Due to space constrains proofs will be omitted.

24 A.J. Garćıa, C.I. Ches̃nevar, N.D. Rotstein, and G.R. Simari

(a)

(b)

(c)

(d)

A
3

A
2

A
1

A
0

A
4

A
3A

2
A

1

A
0

A
4

UUD

D

U

A
3

A
1

A
2

A
0

A
4

UDU

D

U

A
1

A
3

A
2

A
0

A
4

UUU

D

U

Fig. 1. (a) Exhaustive dialectical treeTA0
for Example 6; (b) resulting tree after applying and-or

marking; (c)–(d) two other exhaustive dialectical trees belonging to the equivalence classTA0

Proposition 4. LetT be a theory, for any argumentA in T there is a unique exhaustive
dialectical treeTA in T (up to an equivalence wrt≡τ as defined in Def. 11).

Acceptable dialectical trees allow to determine whether the root node of the tree is
to be accepted (ultimatelyundefeated) or rejected (ultimatelydefeated) as a rationally
justified belief. Amarking functionprovides a definition of such acceptance criterion.
Formally:

Definition 15 (Marking criterion). Let T be a theory. A marking criterion forT is a
functionMark : Tree

T
→ {D,U}. We will writeMark(Ti) = U (resp.Mark(Ti) = D)

to denote that the root node ofTi is marked asU -node (resp.D-node).

Definition 16 (Warrant). Let T be an argumentative theory andMark a marking cri-
terion for T . An argumentA is a warranted argument(or just warrant) wrt a marking
criterion Mark in T iff the exhaustive dialectical treeTA is such thatMark(TA) = U .
We will denote a marked dialectical tree asT ∗

A.

3 Answers andδ-Explanations

An argument is a piece of reasoning that supports a claimQ from certain evidence. The
tenability of this claim must be confirmed by analyzing otherarguments for and against
such claim. Next, we will definequeries, answersandexplanationsin the abstract con-
text introduced in the previous Section.

The dialectical process for warranting a claim involves finding the arguments that
either support or interfere with that claim. These arguments are connected through the
defeat relation and are organized in dialectical trees. Observe that given a claim there

An Abstract Presentation of Dialectical Explanations in Defeasible Argumentation 25

could exist inT different arguments that support it, and each argument willgenerate a
different dialectical tree.

Definition 17 (T -Queries).Let T be an argumentation theory. AT-queryQ posed to
the theoryT will represent the process of finding out the existence, and the warranting
status, of the posible arguments forQ andQ.4

We will show below that the returned answer forQ will be only the result of analyz-
ing a set of dialectical trees that have been built and considered as to support this answer.
Thus, to understand why a query has that particular answer, it is essential to consider
which arguments have been considered and what connections exist among them.

It is important to notice thatδ-Explanations are at the crux of an argumentation
system whose proof procedure is based on the construction ofdialectical trees. They
present the reasoning carried out by the system, and they allow to visualize the support
for the answer given. It is clear that without this information it will be very difficult to
understand the returned answer.

Definition 18 (δ-Explanation). Let T be an argumentation theory and letQ be a
claim. LetA0,. . .,An be all the arguments forQ from T , andB0,. . .,Bm be all the
arguments forQ from T . Then, theexplanationfor Q in T is the set of marked dialec-
tical treesE

T
(Q) = {T ∗

A0
,. . .,T ∗

An

} ∪ {T ∗
B0

,. . .,T ∗
Bm

}.

Now it is possible to defineT -answers in terms of the associatedδ-Explanations.

Definition 19 (T -answer).Given an argumentation theoryT and a queryQ, the an-
swer forQ is:

- YES, if at least one tree inE
T
(Q) warrantsQ.

- NO, if at least one tree inE
T
(Q) warrantsQ.

- UNDECIDED, if E
T
(Q) is non empty, but no tree inE

T
(Q) warrantsQ nor Q.

- UNKNOWN, if there is no argument forQ in T .

Notice that if there is a dialectical that shows that an argument warrantsQ then there
is no argument that warrantsQ.

4 Answers andδ-Explanations in DELP: A Reification

Next, we will definequeries, answersandexplanationsusing the framework provided
by DELP (see [11] for full details on DELP). Extending the abstract presentation above,
we will introduce two types of queries: ground (called DELP-queries) and schematic.
For both types of queries we will define explanations and a wayto obtain the corre-
sponding answer, that is:YES, NO, UNDECIDED or UNKNOWN.

Definition 20 (DELP-queries).A DELP-queryis a ground literal thatDELP will try
to warrant. A query with at least one variable will be calledschematic queryand will
account for the set ofDELP-queries that unify with the schematic one.

4 The notationQ is used to represent the complement ofQ with respect to strong negation,i.e.,
a=∼a and∼a=a.

26 A.J. Garćıa, C.I. Ches̃nevar, N.D. Rotstein, and G.R. Simari

In DELP, δ-Explanationsfor answers will be the set of dialectical trees that have
been explored to obtain a warrant for that query. The definition for aδ-Explanation for a
DELP-query follows, whereas explanations for schematic queries will be introduced by
the end of this Section. It is clear that without the information regarding the dialectical
trees it will be very difficult to understand the returned answer. Next, we will introduce
explanations for ground queries and we will generalize themfor schematic queries.

Definition 21 (δ-Explanations for a DELP-query).
LetP be aDELP-program andQ a DELP-query. Let〈A0, Q〉,. . .,〈An, Q〉 be all the
arguments forQ from P, and 〈B0, Q〉,. . .,〈Bm, Q〉 be all the arguments forQ from
P. Then, theexplanationfor Q in P is the set of marked dialectical treesEP (Q) =
{T ∗

〈A0, Q〉,. . .,T
∗
〈An, Q〉} ∪ {T

∗
〈B0, Q〉

,. . .,T ∗
〈Bm, Q〉

}.

Using these concepts we can define DELP-answers.

Definition 22 (DELP-answer).Given aDELP-programP and aDELP-queryQ, the
answer forQ is:

- YES, if at least one tree inEP (Q) warrantsQ.
- NO, if at least one tree inEP (Q) warrantsQ.
- UNDECIDED, if no tree inEP (Q) warrantsQ nor Q.
- UNKNOWN, if Q is not in the signature ofP.

Example 7.Consider the DELP-program(Π7,∆7) where:

Π7 =























bird(X) ← chicken(X)
chicken(little)
chicken(tina)
scared(tina)
bird(rob)























∆7=







flies(X) −−≺ bird(X)
flies(X) −−≺ chicken(X), scared(X)
∼flies(X) −−≺ chicken(X)







From the DELP-program(Π7,∆7) the following arguments can be obtained (due to
space restrictions‘tina’ will be abbreviated to‘t’ and ‘flies(tina)’ to ‘f ’): 〈A1, f〉 =
〈{flies(t) −−≺ bird(t)}, f lies(t)〉, 〈A2,∼f〉 = 〈{∼flies(t) −−≺ chicken(t)},∼flies(t)〉,
and〈A3, f〉 = 〈{flies(t) −−≺ chicken(t), scared(t)}, f lies(t)〉. The argument〈A2,∼f〉
defeats〈A1, f〉, 〈A3, f〉 defeats〈A2,∼f〉, and[〈A1, f〉, 〈A2,∼f〉, 〈A3, f〉] is an ac-
ceptable argumentation line.

Figure 2 shows theδ-Explanation for the DELP-query ‘flies(tina)’, where two di-
alectical trees for ‘flies(tina)’ are marked “U ”. Therefore, ‘flies(tina)’ is warranted
and the answer isYES. Note that theδ-Explanation of Figure 2 is also an explanation
for query ‘∼flies(tina)’ whose answer isNO. Finally, observe that the answer for
‘walks(tim)’ is UNKNOWN, because it is not in the program signature.

Remark 2.The explanation for complementary literals will always be the same, since
it is composed by both the trees for the literal and the trees for its complement.

As we will show in the examples below, the semantics of the programs issensitive
to the addition or deletion of rules and facts. That is, a new fact added to a program

An Abstract Presentation of Dialectical Explanations in Defeasible Argumentation 27

A
2

A
3

~flies(tina)

flies(tina)

U

DA
1

flies(tina)

U

A
3

flies(tina)

U A
2

~flies(tina)

D

A
3

flies(tina)

U

Fig. 2. δ-Explanation forflies(tina)

can have a big impact on the number of arguments that can be built from the modi-
fied program. Taking into account this characteristic and considering the many possible
interactions among arguments via the defeat relation (thatlead to the construction of
different dialectical trees),δ-Explanations become essential for understanding the rea-
sons that support an answer.

Example 8.Consider the DELP-program (Π8,∆8): Π8 = {q, t},∆8 = {(r −−≺ q),
(∼r −−≺ q , s), (r −−≺ s), (∼r −−≺ t)}, where the following arguments can be built:
〈R1,∼r〉 = 〈{∼r −−≺ t},∼r〉, and〈R2, r〉 = 〈{r −−≺ q}, r〉. From this program the an-
swer for the query ‘r’ is UNDECIDED, and Figure 3 shows itsδ-Explanation. Note that,
although the literal ‘s’ is in the program signature (in the body of a rule), there is no
supporting argument for it. Therefore, the answer for query‘s’ is UNDECIDED, and the
δ-Explanation is the empty set (i.e., E(Π8,∆8)

(s)=∅).

R
2

~r
U

R
1

D

r

R
1

r
U

R
2

D

~r

Fig. 3. δ-ExplanationE(Π8,∆8)
(r)

Remark 3.DELP-queries withUNKNOWN answers always have an emptyδ-Explanation.
However, DELP-queries that haveUNDECIDED answers may have empty or non-empty
explanations. Finally, DELP-queries withYES or NO answers will always have a non-
empty explanation.

Example 9.(Extends Ex. 8) In this example we see how the introduction ofa single
fact in (Π8,∆8) makes a significant difference inE(Π8,∆8)

(r). Consider the DELP-
program(Π8∪{s},∆8) where the fact ‘s’ is added to the program of Example 8. If we
query for ‘r’ again, we get the answerNO with the δ-Explanation shown in Figure 4.
Note that thisδ-Explanation consists now of two more trees than the one in the previ-
ous example. This is so because there are two newly generatedarguments:〈R3, r〉 =
〈{r −−≺ s}, r〉, and〈R4,∼r〉 = 〈{∼r −−≺ q , s},∼r〉

It is our contention that, in DELP, the answer for a query should be easily explained
by presenting the user the associated dialectical trees. From this set of trees the answer

28 A.J. Garćıa, C.I. Ches̃nevar, N.D. Rotstein, and G.R. Simari

R
1

R
2

R
4

~r

~r

U

U R
4

~r
U

D R
3
D

rr

R
4
U

~r

R
2

R
1

r

D

U R
4
U

~r~r

R
3

R
1

r

D

U R
4
U

~r~r

Fig. 4. δ-ExplanationE(Π8∪{s},∆8)
(r)

becomes thoroughly justified, and the context of the query isrevealed. The following
examples have more elaborated DELP-programs and theδ-Explanations show that a
defeaterD for A may attack an inner point ofA.

Example 10.Consider the DELP-program (Π10,∆10), whereΠ10 = {c, e, f} and

∆10 =

{

(a −−≺ b), (b −−≺ c), (∼b −−≺ d), (d −−≺ e), (∼d −−≺ f , e), (∼b −−≺ e),
(a −−≺ x), (x −−≺ c), (∼x −−≺ e), (a −−≺ h), (h −−≺ f), (∼h −−≺ i)

}

the following arguments can be built:〈A1, a〉 = 〈{(a −−≺ h), (h −−≺ f)}, a〉
〈B1, b〉 = 〈{b −−≺ c}, b〉 〈B2,∼b〉 = 〈{∼b −−≺ e},∼b〉
〈D1, d〉 = 〈{d −−≺ e}, d〉 〈D2,∼d〉 = 〈{(∼d −−≺ f , e)},∼d〉
〈X1, x〉 = 〈{x −−≺ c}, x〉 〈X2,∼x〉 = 〈{∼x −−≺ e},∼x〉

From (Π10,∆10) the answer for ‘a’ is YES, and the answer for ‘∼a’ is NO. As
stated in Remark 2, although both queries have different answers, they both have the
sameδ-Explanation, which is depicted in Figure 5.

A
1
U

a

B
1

D
1

b

a

D

D
2

~d
U

D
B
2
U

~b~b

�

d

�

X
1

X
2

~x
U

Dx

a�

Fig. 5. δ-ExplanationE(Π10,∆10)
(a)

From the DELP programmer point-of-view,δ-Explanations give a global idea of
the interactions among arguments within the context of a query. This is an essential
debugging tool when programming: if unexpected behavior arises, the programmer can
check the given explanations to detect errors.

In the previous examples we have not shown an explanation associated with a query
with anUNKNOWN answer, because this type of answers have an emptyδ-Explanation.

An Abstract Presentation of Dialectical Explanations in Defeasible Argumentation 29

In a similar manner, observe that queries that do not correspond to the intended domain
of the program will return the answerUNKNOWN. This will capture errors like querying
for “fly” instead of“flies” , or a query like“penguin(X)” in Example 7.

Now we will extend the notion of explanation to encompassschematic queries. A
schematic query is a query that has at least one variable (seeDefinition 20), and hence
it represents the set of DELP-queries that unify with it. We will extend the definition of
δ-Explanation to include schematic queries. In the DELP-program of Example 7, the
schematic queryflies(X) will refer to flies(tina) andflies(little).

Observe that there are actually infinite terms that unify with variableX. However,
all queries with terms that are not in the program signature will produce anUNKNOWN

answer and therefore an empty explanation. Thus, the set of instances of a schematic
query that will be considered for generating an explanationwill refer only to those
instances of DELP-queries that contain constants from the program signature.

Definition 23 (Generalizedδ-Explanation).
Let P be a DELP-program andQ a schematic query. Let{Q1, . . . , Qz} be all the
instances ofQ so that theirDELP-answer is different fromUNKNOWN. Let EP (Qi)
be theδ-Explanation for theDELP-queryQi (1 ≤ i ≤ z) from programP. Then, the
generalizedδ-Explanationfor Q in P is EP (Q) = { EP (Q1), . . ., EP (Qz)}.

Observe that aδ-Explanation (Definition 21) is a particular case of a Generalized
δ-Explanation, where the setEP (Q) is a singleton.

Example 11.Consider again the DELP-program(Π7,∆7), and suppose that we want
to know if from this program it can be warranted that a certainindividual does not
fly. If we query for∼flies(X), the answer isYES, because there is a warranted in-
stance:∼flies(little). The supporting argument is (‘little’ was abbreviated to‘l’):
〈B1,∼flies(l)〉 = 〈{∼flies(l) −−≺ chicken(l)},∼flies(l)〉. The trees of the general-
ized explanation are shown in Figure 6. This explanation also shows that the other
instance (∼flies(tina)) is not warranted. Note that the answer for the schematic query
flies(X) is also YES, but with a different set of warranted instances:flies(tina)
and flies(rob). The supporting argument for instance ‘X = tina’ was already dis-
cussed, and the undefeated argument for instance ‘X = rob’ is: 〈C1, f lies(rob)〉 =
〈{flies(rob) −−≺ bird(rob)}, f lies(rob)〉. The generalizedδ-Explanation forflies(X)
is the same as the one for∼flies(X), depicted in Figure 6 (see Remark 2).

Definition 24 (DELP-answer for a schematic query).Given aDELP-programP and
a schematic queryQ, the answer forQ is

– YES, if there exists an instanceQi of Q such that at least one tree inEP (Qi)
warrantsQi.

– NO, if there exists an instanceQi of Q such that at least one tree inEP (Qi) war-
rantsQi.

– UNDECIDED, if for every instanceQi of Q that is in the signature ofP, there is no
tree inEP (Qi) that warrantsQi nor Qi.

– UNKNOWN, if there is no instanceQi of Q such thatQi is in the signature ofP.

30 A.J. Garćıa, C.I. Ches̃nevar, N.D. Rotstein, and G.R. Simari

B
2

~flies(little)

U C
1

flies(rob)

UA
2

A
3

~flies(tina)

flies(tina)

U

DA
1

A
2

A
3

~flies(tina)

flies(tina)

flies(tina)

U

U

D

A
3

flies(tina)

U

B
2

~flies(little)

U

B
1

flies(little)

D

Fig. 6.Generalizedδ-Explanation for ‘∼flies(X)’

Observe that Definition 22 is a particular case of the previous definition, where there is
a single instance ofQ.

Example 12.Consider the following DELP-program:

Π12 =















adult(peter)
adult(annie)
unemployed(peter)
student(annie)















∆12 =







has a car(X) −−≺ adult(X)
∼has a car(X) −−≺ unemployed(X)
∼has a car(X) −−≺ student(X)







where the following arguments can be built (‘has a car’ was replaced by ‘car’, ‘ annie’
by ‘a’, and ‘peter’ by ‘ p’): 〈A1, car(a)〉 = 〈{car(a) −−≺ adult(a)}, car(a)〉,
〈A2,∼car(a)〉 = 〈{∼car(a) −−≺ student(a)},∼car(a)〉,
〈P1, car(p)〉 = 〈{car(p) −−≺ adult(p)}, car(p)〉, and
〈P2,∼car(p)〉 = 〈{∼car(p) −−≺ unemployed(p)},∼car(p)〉.
When querying for ‘has a car(X)’, variable ‘X ’ unifies with both ‘annie’ and ‘peter’.
Then, DELP builds arguments for both instances:A1 andA2 for ‘X = annie’, andP1

andP2 for ‘X = peter’. From Figure 7, it is clear that no argument is undefeated,i.e.,
there is no tree that warrants ‘has a car(X)’, for either of the two instances. Therefore,
the answer isUNDECIDED, and the variable remains unbound.

P
1

P
2

~car(peter)
U

D

car(peter)

P
2

P
1

car(peter)
U

D

~car(peter)

A
1

A
2

~car(annie)
U

D

car(annie)

A
2

A
1

car(annie)
U

D

~car(annie)

Fig. 7.Generalizedδ-Explanation for ‘has a car(X)’

Schematic queries give us the possibility of asking more general questions than
ground queries. Now we are not asking whether a certain pieceof knowledge can be

An Abstract Presentation of Dialectical Explanations in Defeasible Argumentation 31

believed, but we are asking if there exists an instance of that piece of knowledge (related
to an individual) that can be warranted in the system. This could lead to deeper reason-
ing as we may pose a query, gather the warranted instances andcontinue reasoning with
those individuals.

Theδ-Explanations system receives a DELP-programP, a queryQ, and an argument
comparison criterionC, and returns aδ-ExplanationEX and the corresponding answer
ANS. The system is described by the following algorithm in a Prolog-like notation:

d_Explanations(P,C,Q,EX,ANS):-
warrants(P,Q,C,WSQ), complement(Q,NQ), warrants(P,NQ,C,WSNQ),
get_trees(WSQ,WSNQ,EX), get_answer(Q,WSQ,WSNQ,ANS).

get_answer(_,WSQ,WSNQ,yes):-WSQ \= [].
get_answer(_,WSQ,WSNQ,no):-WSNQ \= [].
get_answer(Q,_,_,unknown):-not_in_signature(Q).
get_answer(_,_,_,undecided).

The above described system is fully implemented and offers support for queries,
answers and explanations. Explanations are written into anXML file, which is parsed
by a visualization applet. The visualization of trees belonging to dialectical explanations
is enhanced by allowing the user to zoom-in/out, implode/explode arguments,etc. The
internal structure of an argument is hidden when imploding,and a unique tag is shown
instead.

Lemma 1 (δ-Explanation Soundness).Let P be a DELP-program,C an argument
comparison criterion, andQ a schematic query posed toP. LetE be theδ-Explanation
returned in support of the answerA. ThenE justifies (Definition 24)A.

Lemma 2 (δ-Explanation Completeness).Let P be a DELP-program,C an argu-
ment comparison criterion, andQ a schematic query posed toP. Let E be theδ-
Explanation returned in support of the answerA. ThenE contains all the possible
justifications (Definition 24) for any instance ofA.

5 Conclusions

In this paper, we have addressed the problem of providing explanation capabilities to an
argumentation system. This is an important, and yet undeveloped field in the area. Our
focus is put on argumentation systems based on a dialecticalproof procedure, studying
dialectical explanations. We have defined an abstract system and a concrete reification
with explanation facilities. We consider the structures that provide information on the
warrant status of a literal. As the system has been implemented, we are developing
applications that use theδ-Explanation system as subsystem.

Acknowledgments

This work was partially supported by CONICET (PIP 5050), ANPCyT (PICT 15043,
PAV076), Project TIN2006-15662-C02-02 (MEC, Spain) and SGCyT-UNS.

32 A.J. Garćıa, C.I. Ches̃nevar, N.D. Rotstein, and G.R. Simari

References

1. L. Amgoud, N. Maudet, and S. Parsons. An argumentation-based semantics for agent com-
munication languages. InProc. of the 15th. ECAI, Lyon, France, pages 38–42, 2002.

2. K. Atkinson, T. J. M. Bench-Capon, and P. McBurney. Multi-agentargumentation for
edemocracy. InProceedings of the Third European Workshop on Multi-Agent Systems,Brus-
sels, Belgium, pages 35–46. Koninklijke Vlaamse Academie, 2005.

3. P. Besnard and A. Hunter. A logic-based theory of deductive arguments. Artificial Intelli-
gence, 1:2(128):203–235, 2001.

4. D. Carbogim, D. Robertson, and J. Lee. Argument-based applications to knowledge engi-
neering.The Knowledge Engineering Review, 15(2):119–149, 2000.

5. C. Ches̃nevar, A. Maguitman, and R. Loui. Logical Models of Argument.ACM Computing
Surveys, 32(4):337–383, December 2000.

6. C. Ches̃nevar and G. Simari. A lattice-based approach to computing warranted belief in
skeptical argumentation frameworks. InProc. of the 20th Intl. Joint Conf. on Artificial Intel-
ligence (IJCAI 2007), Hyberabad, India, page (in press), January 2007.

7. C. Ches̃nevar, G. Simari, T. Alsinet, and L. Godo. A Logic Programming Framework for
Possibilistic Argumentation with Vague Knowledge. InProc. of the Intl. Conf. in Uncer-
tainty in Art. Intelligence. (UAI 2004). Banff, Canada, pages 76–84, July 2004.

8. C. Ches̃nevar, G. Simari, and L. Godo. Computing dialectical trees efficiently in possibilistic
defeasible logic programming.Proc. of the 8th Intl. Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2005), pages 158–171, September 2005.

9. P. Dung. On the Acceptability of Arguments and its Fundamental Role in Nomonotonic
Reasoning and Logic Programming and n-Person Games.Artificial Intelligence, 77(2):321–
358, 1995.

10. Marcelo A. Falappa, Gabriele Kern-Isberner, and Guillermo R. Simari. Explanations, belief
revision and defeasible reasoning.Artif. Intell., 141(1):1–28, 2002.

11. A. Garćıa and G. Simari. Defeasible Logic Programming: An Argumentative Approach.
Theory and Practice of Logic Programming, 4(1):95–138, 2004.

12. Giovanni Guida and Marina Zanella. Bridging the gap between users and complex decision
support systems: the role of justification. InICECCS ’97: Proc. 3rd IEEE Int. Conf. on
Engineering of Complex Computer Systems, pages 229–238, Washington, DC, 1997.

13. H. Jakobovits and D. Vermeir. Dialectic semantics for argumentation frameworks. InICAIL,
pages 53–62, 1999.

14. A. Kakas and F. Toni. Computing argumentation in logic programming.Journal of Logic
Programming, 9(4):515:562, 1999.

15. Carmen Lacave and Francisco J. Diez. A review of explanation methods for heuristic expert
systems.Knowl. Eng. Rev., 19(2):133–146, 2004.

16. B. Moulin, H. Irandoust, M. B́elanger, and G. Desbordes. Explanation and argumentation
capabilities: Towards the creation of more persuasive agents.Artif. Intell. Rev., 17(3):169–
222, 2002.

17. S. Parsons, C. Sierrra, and N. Jennings. Agents that Reason and Negotiate by Arguing.
Journal of Logic and Computation, 8:261–292, 1998.

18. H. Prakken and G. Sartor. The role of logic in computational models of legal argument - a
critical survey. In A. Kakas and F. Sadri, editors,Computational Logic: Logic Programming
and Beyond, pages 342–380. Springer, 2002.

19. H. Prakken and G. Vreeswijk. Logical Systems for Defeasible Argumentation. In D. Gabbay
and F.Guenther, editors,Handbook of Philosophical Logic, pages 219–318. Kluwer Aca-
demic Publishers, 2002.

20. L. Richard Ye and Paul E. Johnson. The impact of explanation facilities on user acceptance
of expert systems advice.MIS Q., 19(2):157–172, 1995.

