
Planning and Defeasible Reasoning ∗

Diego R. Garcia
Artificial Intelligence Research
and Development Laboratory

Department of Computer
Science and Engineering

Universidad Nacional del Sur
– (8000) Bahia Blanca.
drg@cs.uns.edu.ar

Alejandro J. Garcia
Artificial Intelligence Research
and Development Laboratory

Department of Computer
Science and Engineering

Universidad Nacional del Sur
– (8000) Bahia Blanca.
ajg@cs.uns.edu.ar

Guillermo R. Simari
Artificial Intelligence Research
and Development Laboratory

Department of Computer
Science and Engineering

Universidad Nacional del Sur
– (8000) Bahia Blanca.
grs@cs.uns.edu.ar

ABSTRACT
We present an argumentation-based formalism that an agent
could use for constructing plans. We will analyze the inter-
action of arguments and actions when they are combined to
construct plans using Partial Order Planning techniques.

Categories and Subject Descriptors
I.2.4 [Artificial intelligence]: Knowledge Representation
Formalisms and Methods; I.2.8 [Artificial intelligence]:
Plan execution, formation, and generation

General Terms
Algorithms, Theory

Keywords
Agents, Planning, Argumentation

1. INTRODUCTION
We present an argumentation-based formalism an agent

could use for constructing plans using partial order plan-
ning techniques. In our proposed approach, actions and ar-
guments will be combined to construct plans. As we will
explain next, actions preconditions can be satisfied by other
actions effects (as usual) or by conclusions supported by ar-
guments based on inference rules and other actions effects.

When actions and arguments are combined in a partial
order plan, new types of interferences appear (called threats
in [2]). These interferences need to be identified and resolved
in order to obtain valid plans. Since our interest here lies
in exploring the important issues that need to be addressed,
the main contribution will be to show meaningful examples
and the description of the new type of interferences.

∗Partially supported by SGCyT U. N. del Sur, CONICET
and Agencia Nacional de Promoción Cientfica y Tecnológica.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07 May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 IFAAMAS .

2. ARGUMENTATION AND ACTIONS
In this section, we introduce a brief description of a for-

malism that combines actions and defeasible argumenta-
tion based on a previous work reported in [5, 4]. Our for-
malism follows the logic programming paradigm for knowl-
edge representation called Defeasible Logic Programming
(DeLP) [1]. Thus, the agent’s knowledge will be represented
by a DeLP program and the agent will be able to perform
defeasible reasoning over this knowledge.

The agent’s knowledge base will be a defeasible logic pro-
gram K = (Ψ,Δ), where Ψ should be a consistent set of facts,
and Δ a set of defeasible rules. Defeasible Rules are denoted
L0

–≺ L1, . . . , Ln, where L0 is a ground literal and {Li}i>0

is a set of ground literals. A defeasible rule “Head –≺ Body”
is the key element for introducing defeasibility [3]. Strong

negation “∼” can appear in the head of defeasible rules,
and it could be used to represent conflicting information.
In DeLP arguments for conflicting pieces of information are
build and then compared to decide which one prevails. A
definition of argument adapted from [1] follows:

Definition 1 [Argument]
Let L be a literal, and K = (Ψ,Δ) a defeasible logic pro-

gram. We say that 〈A, L〉 is an argument for L if A is
a minimal, non-contradictory, set of defeasible rules of Δ,
such that Ψ ∪ A � L.

DeLP provides a mechanism for deciding which argument
prevails and therefore, which literals are warranted (see [1]
for further details). Besides its knowledge base K, an agent
will have a set of actions Γ that it may use to change its
world. We recall the formal definitions introduced in [4, 5].

Definition 2 [Action] An action A is an ordered triple
〈X,P,C〉, where X is a consistent set of literals representing
consequences of executing A, P is a set of literals represent-
ing preconditions for A, and C is a set of constraints of the
form not L, where L is a literal. We will denote actions as

follows: {X1, . . . , Xn}
A
←− {P1, . . . , Pm}, not {C1, . . . , Ck},

where not {C1, . . . , Ck} represents {not C1, . . . , not Ck}.

Accordingly, the condition that must be satisfied before
an action A = 〈X,P,C〉 can be executed contains two parts:
P, which mentions the literals that must be warranted, and
C, which mentions the literals that must not be warranted.

Definition 3 [Applicable Action] Let K = (Ψ,Δ) be an
agent’s knowledge base. Let Γ be the set of actions avail-
able to this agent. An action A in Γ, is applicable if every

856

978-81-904262-7-5 (RPS) c©2007 IFAAMAS



precondition Pi in P has a warrant built from (Ψ,Δ) and
every constraint Ci in C fails to be warranted.

It is clear that only applicable actions can be executed.
When an action is applied by the agent, it’s effect change
the environment and the set K. The effect of the execution
of an applicable action in our formalism is defined below:

Definition 4 [Action Effect] Let K = (Ψ,Δ) be an agent’s
knowledge base. Let Γ be the set of actions available to this
agent. Let A be an applicable action in Γ defined by:

{X1, . . . , Xn}
A
←− {P1, . . . , Pm}, not {C1, . . . , Ck}

The effect of executing A is the revision of Ψ by X, i.e.
Ψ∗X = Ψ∗{X1,...,Xn}. Revision will consist of removing any
literal in Ψ that is complementary of any literal in X and
then adding X to the resulting set. Formally:

Ψ∗X = Ψ∗{X1,...,Xn} = (Ψ− X) ∪ X

where X represents the set of complements of members of X.

The argumentation formalism described above allows an
agent to represent knowledge about the environment and
to define the actions it can perform. However, it does not
describe how to construct a plan to achieve the agent’s goals.

A simple formulation of a planning problem defines three
inputs: a description of the initial state of the world in some
formal language, a description of the agent’s goal, and a
description of the possible actions that can be performed.
The initial state is the agent’s current representation of the
world, and in our case it will be the set Ψ. The agent’s
goals will be represented as a set G of literals. The agent
will satisfy its goals when through a sequence of actions it
reaches some state Ψ′ where each literal of G is warranted.

In the following section, we will describe how partial order
planning techniques can be combined with the described for-
malism to provide the agent with the ability to build plans.

3. ARGUMENTATION IN PARTIAL ORDER
PLANNING

The basic idea behind a regression Partial Order Planning
(POP) algorithm [2] is to search through plan space. The
planner starts with an initial plan that consists solely of a
start step (whose effects encode the initial state conditions)
and a finish step (whose preconditions encode the goals)
(see Figure 1(a)). Then it tries to complete the initial plan
by adding new steps (actions) and constraints until all step’s
preconditions are guaranteed to be satisfied. The main loop
in a traditional POP algorithm makes two type of choices:

• Supporting unsatisfied preconditions: Chooses a step
to achieve a selected unsatisfied precondition.

• Resolve threats: If a step might possibly interfere with
the precondition being supported by another step, it
chooses a method to resolve this threat.

To combine the argumentation formalism with POP, we
must consider the use of arguments for supporting unsatis-
fied preconditions, besides actions.

The following definitions are introduced for identifying
different sets of literals present in an argument, that will
be considered when a plan is constructed.

Definition 5 [Heads-Bodies-Literals] Given an argument
〈B,h〉, heads(B) is the set of all literals that appear as
heads of rules in B. Similarly, bodies(B) is the set of all
literals that appear in the bodies of rules in B. The set
of all literals appearing in B, denoted literals(B) is the set
heads(B) ∪ bodies(B).

Definition 6 [Argument base] Given an argument 〈B,h〉
we will say that the base of B is the set base(B) = bodies(B)−
heads(B).

Definition 7 [Conclusion] Given an argument 〈B,h〉 we
will say that the conclusion of B is the literal conclusion(B) =
heads(B) − bodies(B).

Following, we will present an example to illustrate how
traditional POP algorithm can be extended to consider argu-
ments as planning steps. For simplicity, we present a propo-
sitional problem that defines actions without constraints.

Example 1 Consider an agent that works at night and its
job is cleaning rooms in a building. The agent arrives to a
room where the light switch is set to off and has to build
a plan for having that room cleaned. The agent have the
following knowledge base: Ψ = {switch off} and

Δ =

{
light in room –≺ switch on

∼light in room –≺ switch on,∼electricity

}

The agent’s goal is G = {room clean}, and the available
actions are:

{room clean}
clean room
←− {light in room}, not {}

{switch on,∼switch off}
turn switch on

←− {switch off}, not {}.

Figure 1: Different partial plans for Example 1.

Figure 1(a) shows the initial plan for example 1. Fig-
ure 1(b) depicts an incomplete plan where only actions were
considered. Figure 1(c) shows a complete plan obtained us-
ing actions and arguments.

In our approach, we will distinguish between two types of
steps: action steps (i. e. steps that represent the execution
of an action) and argument steps (i. e. arguments used in
the plan to support the precondition of some action step).
Action steps are depicted by square nodes labelled with the
action name. The literals that appear below an action step
represent the preconditions of the action step, and the lit-
erals that appear above represent its effects. The solid ar-
rows in the figure represent causal links and dashed arrows
represent ordering constraints. Finally, triangles represent
argument steps and are labelled with the argument name.
The literal at the top of the triangle is the conclusion of the
argument (Definition 7), and the literals at the base of the
triangle represent the base of the argument (Definition 6).

In Figure 1(a) there is only one unsatisfied precondition
room clean, and the only possible way to satisfy it is by
the action clean room. A new step clean room is added

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 857



(Figure 1(b)) to the plan and it’s precondition light in room
becomes a new unsatisfied subgoal. Observe that none of
the actions available achieve light in room, then it is not
possible to obtain a plan if only actions are considered.

However, from the rules Δ of the agent’s knowledge base
it is possible to construct the (potential) argument B={
(light in room –≺ switch on) } that supports light in room.
Therefore, an alternative way to achieve light in room would
be to use B for supporting light in room, and then to find a
plan for satisfying all the literals in the base of B (base(B) =
{switch on}). Figure 1(c) shows this situation. The argu-
ment B is chosen to support light in room and the literal
switch on becomes a new subgoal of the plan. Then, the ac-
tion turn switch on is selected to satisfy switch on and the
corresponding step is added to the plan. The precondition
switch off of the step turn switch on is achieved by the
start step, so a causal link is added and a plan is obtained.

Note that B={ (light in room –≺ switch on) } is a “po-
tential argument” because it is conditioned to the existence
of a plan that satisfies its base. This argument can not be
constructed from a set of facts, as usual. The reason is that
at the moment of the argument construction it is impossi-
ble to know which literals are true, because they depend on
steps that will be chosen later in the planning process. A
formal definition of potential argument follows:

Definition 8 [Potential Argument]
Let L be a literal, and Δ a set of defeasible rules. We say
that 〈〈A, L〉〉 is a potential argument for L if A is a minimal,
non-contradictory, set of defeasible rules of Δ, such that
base(A) ∪A � L

Another thing to consider is that the existence of this ar-
gument B is not enough to have a warrant for light in room,
because B could be defeated by a counter-argument (for ex-
ample, when there is no electricity in the building). Recall
that in order to be able to apply an action, all it’s precon-
ditions has to be warranted.

4. INTERFERENCES AMONG ACTIONS AND
ARGUMENTS

When only actions are considered, there is only one type
of destructive interference that can arise in a plan. In the
traditional POP algorithm, this interference is captured by
the notion of threat (see Figure 2(a)). When actions and
arguments are combined to construct plans, new types of
interferences appear that need to be identified and resolved
in order to obtain a valid plan. We will extend the notion
of threat to identify all the different types of interferences.

Figure 2(a) shows the kind of threat that appears in the
traditional POP algorithm: the precondition a of A1, sup-
ported by A2, is threatened by the action step A3 because it
negates a. Note that a is an effect of A3, where a stands for
the complement of a with respect to strong negation, i. e. p

is ∼p, and ∼p is p.
This type of threat involves only action steps and will be

called action-action threat. However, as we consider also ar-
guments to construct a plan, a different kind of threat could
arise involving action steps and argument steps. Consider
the situation shown in Figure 2(b). In this case, the action
step A3 threatens the argument step B because it negates a
literal present in the argument B. Note that n is an effect
of A3 and n ∈ literals(B) (see definition 5). The argument
step B was added to the plan to support the precondition

Figure 2: Interferences that could arise in a plan

b of the action step A1. If A3 makes n true before A1 is
executed, the argument B will not exist at the moment a
warrant for b is needed to execute A1. This type of threat
will be called action-argument threat.

Finally, there is another type of threat to consider that
involves only arguments. Arguments are introduced in the
plan to have a warrant for the precondition of some action
step. Since the arguments could be defeated by a counter-
argument, the precondition would not be warranted. This
situation is shown in figure 2(c): The argument step B was
added to the plan to support the precondition b of the action
step A1. However, at the moment a warrant for b is needed
to execute A1, there exist a defeater C for B. We will refer
to this type of threat as argument-argument threat. Observe
that the defeater C is not necessarily an argument step of
the plan. The argument C could be any defeater that can
be built from the effects of the actions steps that could be
ordered to come before A1 in the plan.

5. CONCLUSIONS
We have show how an argumentation-based formalism can

be combined with partial order planning technics to con-
struct plans. The traditional POP algorithm was extended
to consider arguments as planning steps. When actions and
arguments are combined to construct plans, new types of in-
terferences appear. We have extended the notion of threat
to consider the new types of interferences.

6. REFERENCES
[1] A. J. Garćıa and G. R. Simari. Defeasible logic

programming: An argumentative approach. Theory and
Practice of Logic Programming, 4(1):95–138, 2004.

[2] J. Penberthy and D. S. Weld. UCPOP: A Sound,
Complete, Partial Order Planner for ADL. In In Proc.
of the 3rd. Int. Conf. on Principles of Knowledge
Representation and Resoning, 113-124., 1992.

[3] J. Pollock. Cognitive Carpentry: A Blueprint for How
to Build a Person. MIT Press, 1995.

[4] G. R. Simari and A. J. Garćıa. Actions and arguments:
Preliminaries and examples. In Proceedings of the VII
Congreso Argentino en Ciencias de la Computación,
pages 273–283. Universidad Nacional de la Patagonia
San Juan Bosco, El Calafate, Argentina, Oct. 2001.
ISBN 987-96-288-6-1.

[5] G. R. Simari, A. J. Garćıa, and M. Capobianco.
Actions, Planning and Defeasible Reasoning. In In
Proceedings of the 10th International Workshop on
Non-Monotonic Reasoning (NMR2004), pages 377–384,
2004. ISBN. 92-990021-0-X.

858 The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07)


