
Defeasible Reasoning and Partial Order Planning

Diego R. Garćıa, Alejandro J. Garćıa, and Guillermo R. Simari

Artificial Intelligence Research and Development Laboratory
Department of Computer Science and Engineering

Universidad Nacional del Sur – Av. Alem 1253, (8000) Bah́ıa Blanca
Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET)�

Abstract. Argumentation-based formalisms provide a way of consider-
ing the defeasible nature of reasoning with partial and often erroneous
knowledge in a given environment. This problem affects every aspect of
a planning process. We will present an argumentation-based formalism
that an agent could use for constructing plans starting from a previ-
ously introduced formalism. In such a formalism, agents represent their
knowledge about their environment in Defeasible Logic Programming,
and have a set of actions they can execute to affect their environment.
These actions are defined in combination with a defeasible argumenta-
tion formalism. We will analyze the interplay of arguments and actions
when constructing plans using Partial Order Planning techniques.

1 Introduction

In this paper, we introduce an argumentation-based formalism an agent could use
for constructing plans using partial order planning techniques. In our proposed
approach, actions and arguments will be combined by the agent to construct
plans. As we will explain next, actions’ preconditions can be satisfied by other
actions’ effects (as usual) or by conclusions supported by arguments that are
based on inference rules and other actions effects. We will also show that besides
those effects declared in the definition of actions, there could be more effects
that the agent will be able to deduce using the argumentation-based reasoning
formalism.

Defeasible argumentation is a powerful formalism suitable for reasoning with
potentially contradictory information and in dynamic environments (see [11, 3,
2, 10, 8]). The formalism presented here is based on Defeasible Logic Program-
ming (DeLP) [3], a defeasible argumentation formalism grounded in Logic Pro-
gramming. For dealing with contradictory and dynamic information in DeLP,
arguments for conflicting pieces of information are build and then compared to
decide which one prevails. The argument that prevails provides a warrant for
the information that it supports.

� Partially supported by SGCyT Universidad Nacional del Sur, CONICET (PIP 5050)
and Agencia Nacional de Promoción Cientfica y Tecnológica (PICT 2002 Nro 13096).

S. Hartmann and G. Kern-Isberner (Eds.): FoIKS 2008, LNCS 4932, pp. 311–328, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



312 D.R. Garćıa, A.J. Garćıa, and G.R. Simari

In [13] a formalism that combines actions and defeasible argumentation was
introduced. There, they show the problems related to the combination of their
formalism with simple planning algorithms.

Extending the mentioned work, in this paper we will analyze the interaction of
arguments and actions when they are combined to construct plans using Partial
Order Planning techniques. When actions and arguments are combined in a
partial order plan, new types of interferences appear (called threats in [7]). These
interferences need to be identified and resolved to obtain valid plans.

The main contribution of this paper will be to show meaningful examples and
the description of the proposed solution for the combination of Partial Order
Planning and Defeasible Argumentation. Thus, our work focuses on improving
the capabilities and scope of current planning technology and not in improving
the efficiency of current planning implementations.

2 Motivation

To solve a planning problem, an agent should be provided with an appropriate
set of actions to perform. The representation of these actions must consider all
the preconditions and effects that are relevant to solve the problem. Consider
for example the consequences of the action of striking a match. A relevant effect
can be to produce fire. However, there are many other consequences that can
be entailed and could be considered irrelevant and not be included in the rep-
resentation of the action (e. g., to produce light, to raise the temperature of the
room, to make smoke, etc).

We propose that, instead of considering all the possible effects in the repre-
sentation of the actions, agents should be provided with a defeasible reasoning
formalism for obtaining those consequences that are entailed from action’s ef-
fects. For example, an action for turning the switch on to light a room (called
“turn switch on” from now on) should have as a precondition that the switch
is set to off and the effect should be that the switch is set to on. The effect
“there is light in the room” should be entailed as a consequence of the effect
the switch is on. Thus, besides the action turn switch on, we propose to include
the (defeasible) rule: “if the switch is set to on then there is a reason to believe
that there is light in the room”. It is important to note that if “there is light in
the room” is considered as an effect of the action turn switch on, then it will be
difficult to consider exceptions like “there is no electricity ”. However, this kind
of problems are easily handled by the argumentation formalism. For example,
this situation could be represented by the defeasible rule “if the switch is set to
on but there is no electricity then there is a reason to believe that there is no
light in the room”.

3 Defeasible Argumentation and Actions

In this section, we introduce a formalism that combines actions and defeasible
argumentation based on a previous work reported in [13, 12, 4]. Our formalism



Defeasible Reasoning and Partial Order Planning 313

follows the logic programming paradigm for knowledge representation called De-
feasible Logic Programming (DeLP) [3]. Thus, the agent’s knowledge will be
represented by a DeLP program and the agent will be able to perform defeasi-
ble reasoning over this knowledge.

The agent’s knowledge base will be a defeasible logic program K = (Ψ, Δ),
where Ψ should be a consistent set of facts, and Δ a set of defeasible rules.
Defeasible Rules are denoted L0 –≺ L1, . . . , Ln, where L0 is a ground literal and
{Li}i>0 is a set of ground literals. A defeasible rule “Head –≺ Body” is the key
element for introducing defeasibility [8] and is understood as expressing that
“reasons to believe in the antecedent Body of a rule provide reasons to believe
in its consequent, Head” [14]. Following Lifschitz [6], DeLP rules could be rep-
resented as schematic rules with variables, making abstraction of the object
constants. The resulting DeLP programs are therefore schematic programs.

Strong negation “∼” can appear in the head of defeasible rules, and it could
be used to represent conflicting information. In DeLP arguments for conflicting
pieces of information are built and then compared to decide which one prevails.
Since the notion of argument will be extensively used in this paper its definition
adapted from [3] is included below:

Definition 1 [Argument]
Let L be a literal, and K = (Ψ, Δ) a defeasible logic program. We say that 〈A, L〉
is an argument for L (or L is supported by A) if A is a set of defeasible rules of
Δ, such that:

1. there exists a derivation for L from Ψ ∪ A,
2. the set Ψ ∪ A is non-contradictory, and
3. A is minimal: there is no proper subset A′ of A such that A′ satisfies condi-

tions (1) and (2).

Example 1. Let (Ψ, Δ) be a knowledge base, where Ψ = {a, b, c, d} and Δ =
{(p –≺ b), (q –≺ r), (r –≺ d), (∼r –≺ s),(s –≺ b), (∼s –≺ a, b), (w –≺ b),(∼w –≺ b, c)}.
From the defeasible logic program (Ψ, Δ) the literal p is supported by the argu-
ment A={p –≺ b}, the literal q by A1= {(q –≺ r), (r –≺ d)}, the literal ∼r by A2=
{(∼r –≺ s), (s –≺ b)}, the argument A3= {(∼s –≺ a, b)} supports ∼s, and A4=
{s –≺ b} supports the liteal s. Observe that A4 is a subargument of A2, i.e., A4
is a subset of A2 that supports an inner conclusion in A2.

Given a defeasible logic program it is possible to generate arguments that are
in conflict. For instance, in Example 1, A3 and A4 are in conflict because both
support contradictory conclusions. Thus, A3 is a counterargument for A4 (and
viceversa). Observe that a counterargument can also be in conflict with an inner
part of other argument. For instance, A2 is a counterargument for A1, because
A2 is in conflict with the subargument {r –≺ d} of A1. In this case, we also say
that A2 attacks A1 at the point r.

Since conflicting arguments can be generated, DeLP provides a mechanism
for deciding which argument prevails and therefore, which literals are warranted.
Next, we will describe briefly this mechanism (see [3] for further details).



314 D.R. Garćıa, A.J. Garćıa, and G.R. Simari

In DeLP, a literal L is warranted from (Ψ, Δ) if there exists a non-defeated
argument A supporting L. To establish whether 〈A, L〉 is a non-defeated argu-
ment, counter-arguments that could be defeaters for 〈A, L〉 are considered. An
argument B is a defeater for A, if B is counter-argument for A and by some
comparison criterion is preferred to 〈A, L〉. In the examples in this paper we
will use generalized specificity [15], a criterion that favors two aspects in an ar-
gument: it prefers (1) a more precise argument (i.e., with greater information
content) or (2) a more concise argument (i.e., with less use of rules). A defeater
D for an argument A can be proper (D is preferred to A) or blocking (same
strength). In Example 1, A3 is preferred to A2 (more precise) hence A3 is a
proper defeater for A2. As stated above, the argument A1 is a counterargument
for A2. Since the subargument {r –≺ d} of A1 and A2 have the same strength,
then A2 is a blocking defeater for A1. It is important to note that in DeLP the
argument comparison criterion is modular and can be replaced. Thus, the most
appropriate criterion for the domain that is being represented can be selected.

Since defeaters are arguments, there may exist defeaters for them, and de-
featers for these defeaters, and so on. Thus, a sequence of arguments called
argumentation line appears, where each argument defeats its predecessor in the
line (see Example 2).

To avoid undesirable sequences, that may represent circular or fallacious ar-
gumentation lines, in DeLP an argumentation line is acceptable if it satisfies
certain constraints. That is, the argumentation line has to be finite, an argu-
ment can not appear twice, and supporting arguments, i.e., arguments in odd
positions, (resp. interfering arguments) have to be not contradictory (see [3] for
details). Given an acceptable argumentation line [A1,. . .,An] we will say that
C is acceptable wrt [A1,. . .,An] if [A1,. . .,An,C] is an acceptable argumentation
line.

Clearly, there can be more than one defeater for a particular argument A.
Therefore, many acceptable argumentation lines could arise from A, leading to
a tree structure. Given an argument 〈A, h〉, a dialectical tree [3] for 〈A, h〉, de-
noted T (〈A, h〉), is a tree where every node is an argument. The root of T (〈A, h〉)
is 〈A, h〉, and every inner node is a defeater (proper or blocking) of its parent.
Leaves correspond to non-defeated arguments. In a dialectical tree every path
from the root to a leaf corresponds to a different acceptable argumentation
line. Thus, a dialectical tree provides a structure for considering all the possi-
ble acceptable argumentation lines that can be generated for deciding whether
an argument is defeated. We call this tree dialectical because it represents an
exhaustive dialectical analysis for the argument in its root.

Given a literal h and an argument 〈A, h〉, to decide whether a literal h is war-
ranted, every node in the dialectical tree T (〈A, h〉) is recursively marked as “D”
(defeated) or “U” (undefeated), obtaining a marked dialectical tree T ∗(〈A, h〉).
Nodes are marked by a bottom-up procedure that starts marking all leaves in
T ∗(〈A, h〉) as “U”s. Then, for each inner node 〈B, q〉 of T ∗(〈A, h〉), 〈B, q〉 will be
marked as “U” iff every child of 〈B, q〉 is marked as “D”, or 〈B, q〉 will be marked
as “D” iff it has at least a child marked as “U”.



Defeasible Reasoning and Partial Order Planning 315

Given an argument 〈A, h〉 obtained from (Ψ, Δ), if the root of T ∗(〈A, h〉)
is marked as “U”, then we will say that T ∗(〈A, h〉) warrants h and that h is
warranted from (Ψ, Δ).

Example 2 (Extends Example 1). Argument A for p is undefeated because
there is no counter-argument for it. Hence, p is warranted.

The literal q has the argument A1 that is defeated by A2 that attacks r, an
inner point in A1. The argument A2 is in turn defeated by A3= {(∼s –≺ a, b)}.
Thus, the argumentation line [A1, A2, A3] is obtained. The literal q is warranted
because its supporting argument A1 has only one defeater A2 that is defeated
by A3, and A3 has no defeaters.

Observe that there is no warrant for ∼r because A2 is defeated by A3. The
literals t and ∼t have no argument, so neither of them is warranted. Finally note
that every fact of Ψ is warranted, because no counter-argument can defeat a
fact. Thus, the set of warranted literals from (Ψ, Δ) is {a, b, c, d, p, q, r, ∼s, ∼w}.

Besides its knowledge base K, an agent will have a set of actions Γ that it may
use to change its world. The formal definitions that were introduced in [12, 13]
are recalled below.

Definition 2 [Action]. An action A is an ordered triple A = 〈X, P, C〉, where
A is a ground atom representing the name of the action, X is a consistent set
of ground literals representing consequences of executing A, P is a set of ground
literals representing preconditions for A, and C is a set of constraints of the form
not L, where L is a ground literal. We will denote actions as follows:

{X1, . . . , Xn} A←− {P1, . . . , Pm}, not {C1, . . . , Ck}

where not {C1, . . . , Ck} represents {not C1, . . . , not Ck}.

Example 3. Let Γ be the set of available actions of for agent:

Γ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{∼a, d, x} Ac1←− {a, p, q}, not {t, ∼t, w}
{e} Ac2←− {p}, not {}
{e} Ac3←− {t}, not {w}
{∼p} Ac4←− {b}, not {q}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Note that all the atoms and literals considered in an action definition are ground.
However, schematic actions (operators) can be defined using non-ground atoms
and literals. An schematic action stands for the set of all possible ground action
instances generated using the object constants.

The condition that must be satisfied before an action A = 〈X, P, C〉 can be
executed contains two parts: P, which mentions the literals that must be war-
ranted, and C, which mentions the literals that must not be warranted. In this
way, the conditions that must be satisfied to execute an action could also depend
on the fact that some information is unknown (un-warranted).



316 D.R. Garćıa, A.J. Garćıa, and G.R. Simari

Definition 3 [Applicable Action]. Let K = (Ψ, Δ) be an agent’s knowledge
base. Let Γ be the set of actions available to this agent. An action A in Γ , is
applicable if every precondition Pi in P has a warrant built from (Ψ, Δ) and
every constraint Ci in C fails to be warranted.

Example 4. Let K= (Ψ, Δ) be the agent’s knowledge base as defined in Exam-
ple 1, and the set of actions Γ from Example 3. As shown in Example 2, the set
of warranted literals from (Ψ, Δ) is {a, b, c, d, p, q, r, ∼s, ∼w}. Then, from (Ψ, Δ)
the action Ac1 is applicable because every literal in its precondition set ({a,p,q})
is warranted, and no constraints in {t, ∼t, w} are warranted. The action Ac2 is
also applicable because it has no constraint and its precondition p is warranted.
Finally, action Ac3 is not applicable because its precondition t is not warranted,
and action Ac4 is not applicable because its constraint q it is warranted.

It is clear that only applicable actions can be executed, and the agent has to plan
which one to execute. Once the agent selects an action to apply, its execution will
affect directly the agent environment. That is, once an action has been applied,
the effect of the action will change both the environment and the set K. The
effect of the execution of an applicable action in our formalism is defined below:

Definition 4 [Action Effect]. Let K = (Ψ, Δ) be an agent’s knowledge base.
Let Γ be the set of actions available to this agent. Let A be an applicable action
in Γ defined by:

{X1, . . . , Xn} A←− {P1, . . . , Pm}, not {C1, . . . , Ck}

The effect of executing A is the revision of Ψ by X, i.e. Ψ∗X = Ψ∗{X1,...,Xn}.
Revision will consist of removing any literal in Ψ that is complementary of any
literal in X and then adding X to the resulting set. Formally:

Ψ∗X = Ψ∗{X1,...,Xn} = (Ψ \ X) ∪ X

where X is the set of complements of members of X.

Example 5 (Extends Example 4). The action Ac1 was shown to be applicable
from (Ψ, Δ). If Ac1 is executed, Ψ then becomes Ψ1 = {b, c, ∼a, d, x}. Observe
that the precondition a was “consumed” by the action, and the literals ∼a and
x were added. It is important to note that from (Ψ1, Δ) the set of warranted
literals changes to {∼a, x, b, c, d, p, s,∼w}. Therefore, the action Ac1 is now not
applicable again because from (Ψ1, Δ) there is no warrant for a and q. How-
ever, the action Ac4 that was not applicable from (Ψ, Δ) is now applicable from
(Ψ1, Δ) because its constraint q is not warranted. Observe that action Ac2 re-
mains applicable.

The argumentation formalism described above allows an agent to represent
knowledge about the environment and to define the actions it can perform. It also
defines when an action is applicable and how to compute its effects. However, it
does not describe how to construct a plan to achieve the agent’s goals.



Defeasible Reasoning and Partial Order Planning 317

In our approach a planning problem is defined by the tuple (Ψ , Δ, Goal, Γ )
where Ψ is a set of literals that represents the initial state, Δ is the set of defea-
sible rules that agent can use for reasoning, Goal is a set of literals representing
the agent’s goals and Γ is a set of actions that the agent can perform. The agent
will satisfy its goals when, through the execution of a sequence of actions, it
reaches some state Ψ ′ where each literal of Goal is warranted from (Ψ ′,Δ).

Next, we will describe how partial order planning techniques can be combined
with the formalism described above to provide the agent with the ability to build
plans.

4 Argumentation in Partial Order Planning

The basic idea behind a regression Partial Order Planning (POP) algorithm [7]
is to search through the plan space. The planner starts with an initial plan
consisting solely of a start step (whose effects encode the initial state conditions)
and a finish step (whose preconditions encode the goals) (see Figure 1(a)).
Then it attempts to complete this initial plan by adding new steps (actions)
and constraints until all step’s preconditions are guaranteed to be satisfied. The
main loop in a traditional POP algorithm makes two types of choices:

– Supporting unsatisfied preconditions: all steps that could possibly achieve a
selected unsatisfied precondition are considered. It chooses one step nonde-
terministically and then adds a causal link to the plan to record that the
selected precondition is achieved by the chosen step.

– Resolve threats: If a step might possibly interfere with the precondition be-
ing supported by a casual link, it nondeterministically chooses a method to
resolve this threat: either by reordering steps in the plan (adding ordering
constraints) or posting additional subgoals.

Recall that in the argumentation formalism described in the previous section,
an action is applicable if every precondition of the action has a warrant built from
the agent’s current knowledge base, and every constraint fails to be warranted.
To combine this formalism with POP, we must consider the use of arguments
for supporting unsatisfied preconditions, besides actions.

In this section we will illustrate with an example how to build a plan using
actions and arguments. When actions and arguments are combined to construct
plans, new types of interferences (threats) appear that need to be resolved to
obtain a valid plan. In Section 5 we will identify these new types of threats and
methods to resolve each of them will be proposed. Finally, in Section 6 we will
propose an extension to the traditional POP algorithm that use actions and
arguments to built plans and resolve the new types of threats.

The following definitions are introduced for identifying different sets of literals
present in an argument, that will be considered when a plan is constructed.

Definition 5 [Heads-Bodies-Literals]. Given an argument 〈B, h〉, heads(B)
is the set of all literals that appear as heads of rules in B. Similarly, bodies(B)



318 D.R. Garćıa, A.J. Garćıa, and G.R. Simari

is the set of all literals that appear in the bodies of rules in B. The set of all
literals appearing in B, denoted literals(B) is the set heads(B) ∪ bodies(B).

Definition 6 [Argument base]. Given an argument 〈B, h〉 we will say that
the base of B is the set base(B) = bodies(B) − heads(B).

Definition 7 [Conclusion]. Given an argument 〈B, h〉 we will say that the
conclusion of B is the literal conclusion(B) = heads(B) − bodies(B).

Example 6. Given the argument 〈B, b〉 where B= {(b –≺ c, d), (c –≺ e)}, the cor-
responding sets are:

heads(B) = {b, c} base(B) = {d, e}
bodies(B) = {c, d, e} conclusion(B) = {b}
literals(B) = {b, c, d, e}

The combined use of argumentation and actions to build plans introduces new
issues not present in the traditional POP algorithm that need to be addressed.
Following, we will present an example to illustrate how traditional POP algo-
rithm can be extended to consider arguments as planning steps. We will also
introduce the basic terminology and graphical representation that will be used
in the rest of the paper. For simplicity, we present a propositional planning
problem that defines actions without constraints.

Example 7. Consider an agent that works at night and its job is cleaning rooms
in a building. The agent arrives to a room where the light switch is set to off and
has to build a plan for having that room cleaned. The agent has the following
knowledge base: Ψ = {switch off} and

Δ =
{

light in room –≺ switch on
∼light in room –≺ switch on, ∼electricity

}

The agent’s goal is G = {room clean}, and the available actions are:

{room clean} clean room←− {light in room}, not {}
{switch on, ∼switch off} turn switch on←− {switch off}, not {}.

Figure 1(a) shows the initial plan for example 7 and Figure 1(b) depicts an in-
complete plan where only actions (not arguments) were considered to achieve the
unsatisfied preconditions. Finally, Figure 1(c) shows a complete plan obtained
using actions and arguments.

In our approach, we will distinguish between two types of steps: action steps
(i.e., steps that represent the execution of an action) and argument steps (i.e.,
arguments used in the plan to support the precondition of some action step).
Action steps are depicted by square nodes labeled with the action name. The
squares labeled start and finish represent the start and finish steps respec-
tively. The literals that appear below an action step represent the preconditions



Defeasible Reasoning and Partial Order Planning 319

(c)

FINISH

START

room_clean

switch_off

clean_room

B

switch_on

Light_in_room

turn_switch_on

switch_off

switch_on

room_clean

Light_in_room

~switch_off

(b)

FINISH

START

room_clean

switch_off

clean_room

Light_in_room

room_clean

(a)

FINISH

START

room_clean

switch_off

Fig. 1. Different partial plans for Example 7

of the action step, and the literals that appear above represent its effects. Tri-
angles represent argument steps and are labeled with the argument name. The
literal at the top of the triangle is the conclusion of the argument (Definition 7),
and the literals at the base of the triangle represent the base of the argument
(Definition 6).

The solid arrows that link an effect of an action step with a precondition of
another action step, or with a literal in the base of an argument step, represent
causal links. The solid arrows between the conclusion of an argument step and a
precondition of an action step represent support links. Causal and support links
are used to explicitly record the source for each literal during planning.

Dashed arrows represent ordering constraints and are used to explicitly es-
tablish an order between two steps. By definition the start step comes before
the finish step and the rest of the steps are constrained to come after the start
step and before the finish step. All causes are constrained to come before their
effects, so a causal link also represents an ordering constraint.

In Figure 1(a) there is only one unsatisfied precondition room clean, and
the only possible way to satisfy it is by the action clean room. A new step
clean room is added (Figure 1(b)) to the plan and it’s precondition light in room
becomes a new unsatisfied subgoal. Observe that none of the actions available
achieve light in room, then it is not possible to obtain a plan if only actions are
considered.

However, from the rules Δ of the agent’s knowledge base it is possible to
construct the (potential) argument B={ (light in room –≺ switch on) } that
supports light in room. Therefore, an alternative way to achieve light in room
would be to use B for supporting light in room, and then to find a plan for satis-
fying all the literals in the base of B (base(B) = {switch on}). Figure 1(c) shows
this situation. The argument B is chosen to support light in room and the literal



320 D.R. Garćıa, A.J. Garćıa, and G.R. Simari

switch on becomes a new subgoal of the plan. Then, the action turn switch on
is selected to satisfy switch on and the corresponding step is added to the plan.
The precondition switch off of the step turn switch on is achieved by the start
step, so the corresponding causal link is added and a plan is obtained.

Note that B={ (light in room –≺ switch on) } is a “potential argument” be-
cause it is conditioned to the existence of a plan that satisfies its base. This
argument can not be constructed from a set of facts, as usual in DeLP. The
reason is that at the moment of the argument construction it is impossible to
know which literals are true, because they depend on steps that will be chosen
later in the planning process. A formal definition of potential argument follows:

Definition 8 [Potential Argument]
Let h be a literal, and Δ a set of defeasible rules. We say that 〈〈A, h〉〉 is a
potential argument for h (or that A is a potential argument supporting h), if A
is a set of defeasible rules of Δ, such that:

1. there exists a defeasible derivation for h from base(A) ∪ A
2. the set base(A) ∪ A is non-contradictory, and
3. A is minimal: there is no proper subset A′ of A such that A′ satisfies condi-

tions 1. and 2.

Another thing to consider is that the existence of the argument B in the plan
shown in Figure 1(c) is not enough to have a warrant for light in room, because
it could exist a defeater for B (for example, when there is no electricity in the
building). Recall that to be able to apply an action, all its preconditions have
to be warranted. The existence of a defeater for B will depend on the decisions
made later in the planning process, that is, a defeater for B could appear as new
action steps are added to the plan.

5 Interferences among Actions and Arguments

When only actions are considered, there is only one type of destructive interfer-
ence that can arise in a plan. In the traditional POP algorithm, this interference
is captured by the notion of threat (see Figure 2). When actions and arguments
are combined to construct plans, new types of interferences appear that need to
be identified and resolved to obtain a valid plan. We will extend the notion of
threat to identify all the different types of interferences that could arise in a plan
and propose methods to resolve each of them.

Figure 2(a) shows the kind of threat that appears in the traditional POP
algorithm: the precondition p of A1, supported by A2, is threatened by the action
step A3 because it negates p. Note that p is an effect of A3, where p stands for
the complement of p with respect to strong negation, i.e., p is ∼p and ∼p is
p. The way to resolve this threat is to add an ordering constraint to make sure
that A3 is not executed between A2 and A1. There are two alternatives: A3 is
forced to come before A2 (called demotion, see Figure 2(b)) or A3 is forced to
come after A1 (called promotion, see Figure 2(c)).



Defeasible Reasoning and Partial Order Planning 321

A
1

p

A
2

p
A
3

(a)

A
3

(b)

A
3

(c)

.

.

.

.

.

.
.
.
.

.

.

.

p

p

A
1

p

A
2

p

A
1

p

A
2

p

p

Fig. 2. An action step threatens the precondition supported by another action step

This type of threat involves only action steps and will be called action-action
threat. However, as we consider also arguments to construct a plan, a different
kind of threat could arise involving action steps and argument steps. Consider
the situation shown in Figure 3. In this case, the action step A3 threatens the
argument step B because it negates a literal present in the argument B. Note
that n is an effect of A3 and n ∈ literals(B) (see definition 5). The argument
step B was added to the plan to support the precondition b of the action step
A1. If A3 makes n true before A1 is executed, the argument B will not exist at
the moment a warrant for b is needed to execute A1. This type of threat will be
called action-argument threat.

This action-argument threat can be resolved ensuring that A3 does not make
n true just before the execution A1. In general, this can be accomplished adding

A
1

A
3

(a)

B

b

b

A
3

.

.

.

n

n

A
2

n

A
3

(c)

..n..

n

...

(b)

A
1

B

b

b

...

n

.

.

.

.

.

.

A
1

B

b

b

Fig. 3. An action step threaten and argument step



322 D.R. Garćıa, A.J. Garćıa, and G.R. Simari

an ordering constraint to force A3 to come after A1. This method will be called
promotion* (see figure 3(b)). However, this is not the only way to resolve this
threat. In the particular case that the literal n is present in the base of B, there
will be an action step A2 in the plan that achieves it. If A2 �= start, then the
threat can be resolved adding an ordering constraint to force A3 to come before
A2. This method will de called demotion* (see figure 3(c)).

Finally, there is another type of threat to consider involving only arguments.
Arguments are introduced in the plan to have a warrant for the precondition of
some action step. Since the arguments could be defeated by a counter-argument,
the precondition would not be warranted. This situation is shown in figure 4(a).
The argument step B was added to the plan to support the precondition b of the
action step A1. However, at the moment a warrant for b is needed to execute A1,
there exists a defeater C for B. We will refer to this type of threat as argument-
argument threat. Observe that the defeater C is not necessarily an argument step
of the plan. The argument C could be any defeater that can be built from the
effects of the actions steps that could be ordered to come before A1 in the plan.

A
1

B

b

b

f
1
... f

n

A
2

f
k

A
1

B

b

b

A
2

A
1

B

b

b

p

A
1

B

b

b

f
1
... f

n
f
1
... f

nDefeater

plan

(a) (b) (c) (d)

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

f
1
... f

n

f
k

p

Disabling

plan

A

A

p

n

nC

C

C

Fig. 4. An argument step is attacked by a counter-argument

This argument-argument threat is resolved ensuring that B is not defeated by
C. There are three alternative methods:

– delaying the defeater: Add orderings constraint to the plan to force every
action step A2 in the plan, that achieve a literal fk ∈ base(C), to come after
A1 (see figure 4(b)). This forces C to exist after A1, therefore b is warranted
at the moment is needed to execute A1.

– defeating the defeater: add steps to the plan to force the defeater C to be
defeated (see figure 4(c)). To accomplish this, the precondition p is added to



Defeasible Reasoning and Partial Order Planning 323

the step A1, where p ∈ heads(C), and the plan is completed to achieve this
precondition. Since the intention is to defeat C, the step chosen to support
p must be an argument step.

– disabling the defeater: add steps to the plan to prohibit the existence of the
defeater C (see figure 4(d)). To accomplish this, the precondition n is added
to the step A1, where n ∈ literals(C), and the plan is completed to achieve
this precondition. The step chosen to support n must be an action step,
because the intention is to prohibit the existence of C.

The proposed solutions for solving the new types of threats will be used in an
algorithm presented in following section (See Figure 6).

6 Proposed Algorithm

In this section we will present an extension of the traditional POP algorithm that
we will call APOP. Figure 5, 6 and 7 show an outline of the APOP algorithm.
The ↓ identify input parameters and the ↑ identify output parameters. The
statements choose and fail are used to describe nondeterminism. The primitive
choose allow the algorithm to make a choice between different alternatives and
keeps track of the pending choices. If the algorithm encounter a fail statement
the control is resumed at the point in the algorithm where the choice was made
and the pending choices are considered.

function APOP(
↓
Ψ,

↓
Δ,

↓
Goal,

↓
Γ): Plan;

begin
Plan:= Make Initial Plan(Ψ, Goal);
loop do

if Plan.Subgoals = ∅ then return Plan;
Let (SubGoal, Step, SubGoalType, ArgLine) ∈ Plan.Subgoals;
Plan.Subgoals:= Plan.Subgoals − {(SubGoal, Step, SubGoalType, ArgLine)};
Choose Step(Plan, Δ, Γ, Step, SubGoal, SubGoalType, ArgLine);
Resolve Threats(Plan, Δ, Γ);

end
end

function Make Initial Plan(
↓
Ψ,

↓
Goal): Plan;

begin
Plan.Action Steps:= {(START,{},Ψ), (FINISH, Goal,{})};

Plan.Argument Steps:= ∅;
Plan.Orderings:= {START ≺ FINISH};
Plan.Subgoals:= {(g,FINISH, any,[])| g ∈ Goal};

Plan.Causal Links:= ∅;
Plan.Support Links:= ∅;
Plan.Defeated Args:= ∅;

end

Fig. 5. Outline of the APOP algorithm part 1

The function APOP (Figure 5) proceeds as the traditional pop algorithm: starts
with an initial plan and attempts to complete it by adding new steps, resolving



324 D.R. Garćıa, A.J. Garćıa, and G.R. Simari

the threats that may appear. However, it will consider arguments and actions
as planning steps and resolve the new types of threats introduced in Section 5.
Besides the initial state Ψ and the Goal, function APOP takes Δ and Γ as input
parameters. The set Δ contains defeasible rules that can be used for building
arguments and Γ is the set of available actions. In APOP a plan is represented
by seven sets (see Make Initial Plan in Figure 5).

In contrast with the traditional POP algorithm the procedure Choose Step

(Figure 6) will consider arguments, besides actions, to support unsatisfied sub-
goals (Plan.Subgoals). Note that if no arguments can be constructed to support
a subgoal (Arg Steps=∅ in statement (2)) then only actions steps will be con-
sidered and the algorithm will proceed as POP (statement (6)). However, if
Arg Steps�= ∅, the algorithm will consider the inclusion of an argument step to
support a subgoal (statement (7)). In each case the plan will updated acordingly.

procedure Choose Step(
↓↑

Plan,
↓
Δ,

↓
Γ,

↓
Sneed,

↓
p,

↓
SubGoalType,

↓
ArgLine)

begin

(1)Act Steps:= {S | S ∈ Plan.Action Steps that possibly S ≺ Sneed

or S is created using an action A ∈ Γ and p ∈ Effects(S) };
(2)Arg Steps:= {S | S is created using a potential argument 〈〈B, p〉〉 from Δ

acceptable wrt ArgLine};
(3) case SubGoalType of

action: Steps:= Act Steps;
argument: Steps:= Arg Steps;
any: Steps:= Act Steps ∪ Arg Steps;

endcase
(4) if Steps= ∅ then fail;
(5) choose Sadd from Steps;
(6) if Sadd ∈ Act Steps then

Plan.Orderings := Plan.Orderings ∪ {Sadd≺Sneed};
Plan.Causal Links:= Plan.Causal Links ∪ {Sadd

p−→ Sneed};
if Sadd �∈ Plan.Action Steps then // Sadd is a newly added step

Plan.Action Steps:= Plan.Action Steps ∪ {Sadd};
Plan.Orderings:= Plan.Orderings ∪ {START ≺ Sadd, Sadd ≺ FINISH};
Plan.Subgoals:= Plan.Subgoals ∪ {(g, Sadd, any,[])| g ∈ Preconditions(Sadd)};

endif
endif

(7) if Sadd ∈ Arg Steps then
Plan.Argument Steps:= Plan.Argument Steps ∪ {Sadd};
Plan.Orderings:= Plan.Orderings ∪ {Sadd≺Sneed };
Plan.Support Links:= Plan.Support Links ∪ {Sadd

p– Sneed};
Plan.Subgoals:= Plan.Subgoals ∪ {(g, Sadd, action,[])|g ∈ Argument Base(Sadd)};

endif
end

Fig. 6. Outline of the APOP algorithm. Part 2: choosing and adding steps.

As new steps are added to the plan, new threats could appear. The function
Resolve threats (Figure 7) detects these threats and tries to resolve them using
the methods proposed in section 5.

The statement (1) considers all action-action threats present in the plan and
tries to resolve each of them choosing either promotion or demotion (see Fig-
ure 2). Following [7], we use “possibly A1≺A3” in the algorithm to express that
A1≺A3 is consistent with the ordering constraint of the plan (Plan.Orderings).



Defeasible Reasoning and Partial Order Planning 325

procedure Resolve Threats(
↓↑

Plan,
↓
Δ,

↓
Γ)

begin
(1)for each A2

p−→ A1 ∈ Plan.Causal Links and A1 ∈ Plan.Action Steps do
for each A3 ∈ {A| A ∈ Plan.Action Steps ∧ p ∈ effects(A) ∧ possibly A2≺A≺A1} do

choose either
Promotion:

if possibly A1≺A3 then
Plan.Orderings:= Plan.Orderings ∪ {A1≺A3};

else fail;
Demotion:

if possibly A3≺A2 then
Plan.Orderings:= Plan.Orderings ∪ {A3≺A2};

else fail;
end

(2)for each B b– A1 ∈ Plan.Support Links do
begin

SA1:={(Add, l)| ∃ Add ∈ Plan.Action Steps ∧ l ∈ Effects(Add) ∧ possibly Add≺A1 ∧
� ∃ Dell ∈ Plan.Action Steps ∧ l ∈ Effects(Dell) ∧ Add≺Dell≺A1 };

ΨA1:={l | (Add, l) ∈ SA1};

(2.a) for each (A3, n) ∈ {(Add, n)| (Add, n) ∈ SA1 ∧ n ∈ literals(B)} do
choose either

Promotion*:
if possibly A1≺A3 then

Plan.Orderings:= Plan.Orderings ∪ {A1≺A3};
else fail;

Demotion*:
if n ∈ Base(B) and A2

n−→ B ∈ Plan.Causal Links and possibly A3≺A2 then
Plan.Orderings:= Plan.Orderings ∪ {A3≺A2};

else fail;
end

(2.b) for each C ∈ {C| 〈〈C, q〉〉 is a potential argument from Δ that is a defeater for B,
base(C)⊆ ΨA1, (C,B) �∈ Plan.Defeated Args and C is acceptable wrt Arg Line(B)} do
choose either

Delaying the defeater:
choose f from base(C)
for each Add ∈ {Add |(Add, f) ∈ SA1} do

if possibly A1≺Add then
Plan.Orderings:= Plan.Orderings ∪ {A1≺Add};

else fail;
Defeating the defater:

choose p from heads(C);
Plan.Subgoals:= Plan.Subgoals ∪ (p,A1,argument,Arg Line(B) + [〈〈C, q〉〉]);
Plan.Defeated Args:= Plan.Defeated Args ∪ {(C,B)}

Desabling the defater:
choose n from literals(C);
Plan.Subgoals:= Plan.Subgoals ∪ (n,A1, action,[]);

end
end

end

Fig. 7. Outline of the APOP algorithm. Part 3: Threats Resolution.

It is important to note that if the plan contains no argument steps then
Plan.Support Links= ∅, hence, statement (2) will not be executed and
Resolve threats will proceed as in traditional POP algorithm.

If the plan contains arguments, statement (2.a) considers all action-argument
threats present in the plan and tries to resolve each of them choosing either



326 D.R. Garćıa, A.J. Garćıa, and G.R. Simari

promotion* or demotion* (see Figure 3). Finally, statement (2.b) considers all
argument-argument threats and tries to resolve each of them choosing either de-
laying the defeater, defeating the defeater or disabling the defeater (see Figure 4).

7 Related Work

The combination of defeasible reasoning and planning is not new [9,11]. However,
in these works, the whole plan is viewed as an argument and then, defeasible
reasoning is performed about complete plans. In contrast, our approach uses
arguments for warranting subgoals, and hence, defeasible reasoning is used in a
single step of the plan.

In [9], a planner is proposed that performs essentially the same search as
POP, but by reasoning defeasibly about plans. That is, it reasons backwards
from goals to subgoals, planning for conjunctive goals separately and then merg-
ing the plans for the individual goals into a combined plan for the conjunctive
goal. Pollock argues that planning must be done defeasibly, making the default
assumption that there are no threats and then modifying the plan as threats
are discovered. Therefore, a planning agent will infer defeasibly that the merged
plan is a solution to the planning problem. A defeater for this defeasible infer-
ence consists of discovering that the plan contains destructive interference. This
interference refers to the traditional notion of threat that involves only actions.
Although this approach combines defeasible reasoning and partial order plan-
ning, defeasible reasoning is not used in the same way as we propose in this
work. He uses defeasible reasoning to reason about the plan as a whole, while
we use defeasible reasoning to warrant subgoals during the planning process.

In [11], an argumentation-based approach for agents following the BDI model
is introduced. They introduce different instantiations of Dung’s abstract argu-
mentation framework for generating consistent desires and consistent plans for
achieving those desires. Although their work relates argumentation and plans,
their approach differs considerably from ours. For them, a complete plan for a
desire d is an “instrumental argument”, i.e., a set of planning rules that sup-
port d. Since complete plans are arguments, they introduce the notion of conflict
among plans (arguments) and their approach defines which plan prevails after
an argumentative analysis. Therefore, plans are more related to our notion of
argument, than to our definition of plan. Finally, they use plans to justify the
selected intentions of the agent.

8 Conclusions

In this paper we have introduced an argumentation-based formalism an agent
could use for constructing plans using partial order planning technics. We have
described how the traditional POP algorithm can be extended to consider argu-
ments as planning steps.



Defeasible Reasoning and Partial Order Planning 327

When actions and arguments are combined to construct plans, new types of in-
terferences appear. Therefore, we have extended the notion of threat to consider:
action-action, action-argument, and argument-argument threats. Methods to re-
solve each type of threat have been proposed.

We have presented an algorithm called APOP, that extends the traditional
POP algorithm to consider actions and arguments as planning steps and resolve
the new types of threats using the proposed methods. A prototype implementa-
tion of this algorithm was implemented in Prolog.

This work was focused on improving the capabilities and scope of current
planning technology and not in improving the efficiency of current planning
implementations. Therefore, we have not made any comparison of the efficiency
with other existing planners.

Future work includes the extension of our formalism to consider other fea-
tures (e. g., conditional effects) that are present in other action representation
languages like AL [1] and PDDL [5].

References

1. Baral, C., Gelfond, M.: Reasonig agents in dynamic domains. In: In Minker, J.
(ed.) Logic-Based artificial intelligence, pp. 257–259. Kluwer Academic Publishers,
Dordrecht (2000)

2. Chesñevar, C.I., Maguitman, A.G., Loui, R.P.: Logical Models of Argument. ACM
Comp. Surveys 32(4) (December 2000)

3. Garćıa, A.J., Simari, G.R.: Defeasible logic programming: An argumentative ap-
proach. Theory and Practice of Logic Programming 4(1), 95–138 (2004)

4. Garcia, D.R., Simari, G.R., Garcia, A.J.: Planning and Defeasible Reasoning. In:
AAMAS 2007. Proceedings of the Sixth Intl. Joint Conf. on Autonomous Agents
and Multi-Agent Systems, pp. 856–858 (2007)

5. Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld,
D., Wilkins, D.: Pddl—the planning domain definition language (1998)

6. Lifschitz, V.: Foundations of logic programs. In: Brewka, G. (ed.) Principles of
Knowledge Representation, pp. 69–128. CSLI Pub., Stanford (1996)

7. Penberthy, J., Weld, D.S.: UCPOP: A Sound, Complete, Partial Order Planner for
ADL. In: Proc. of the 3rd. Int. Conf. on Principles of Knowledge Representation
and Resoning, pp. 113–124 (1992)

8. Pollock, J.: Cognitive Carpentry: A Blueprint for How to Build a Person. MIT
Press, Cambridge (1995)

9. Pollock, J.: Defeasible Planning. In: Bergmann, R., Kott, A. (Cochairs) Integrating
Planning, Scheduling, and Execution in Dynamic and Uncertain Environments
AIPS Workshop (1998)

10. Prakken, H., Vreeswijk, G.: Logical systems for defeasible argumentation. In: Gab-
bay, D. (ed.) Handbook of Philosophical Logic, 2nd edn. Kluwer Academic Pub.,
Dordrecht (2000)

11. Rahwan, I., Amgoud, L.: An argumentation-based approach for practical reasoning.
In: Proc. AAMAS, pp. 347–354 (2006)



328 D.R. Garćıa, A.J. Garćıa, and G.R. Simari

12. Simari, G.R., Garćıa, A.J.: Actions and arguments: Preliminaries and examples.
In: Proc. VII Congreso Argentino en Ciencias de la Computación, Argentina, pp.
273–283 (October 2001)

13. Simari, G.R., Garćıa, A.J., Capobianco, M.: Actions, Planning and Defeasible Rea-
soning. In: NMR 2004. Proceedings of the 10th International Workshop on Non-
Monotonic Reasoning, pp. 377–384 (2004), ISBN: 92-990021-0-X

14. Simari, G.R., Loui, R.P.: A Mathematical Treatment of Defeasible Reasoning and
its Implementation. Artificial Intelligence 53, 125–157 (1992)

15. Stolzenburg, F., Garćıa, A., Chesñevar, C.I., Simari, G.R.: Computing Generalized
Specificity. Journal of Non-Classical Logics 13(1), 87–113 (2003)


	Introduction
	Motivation
	Defeasible Argumentation and Actions
	Argumentation in Partial Order Planning
	Interferences among Actions and Arguments
	Proposed Algorithm
	Related Work
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


