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Abstract. This paper analyzes the aggregation of different abstract attack re-
lations over a common set of arguments. Each of those attack relations can be
considered as the representation of a criterion of warrant. It is well known in
the field of Social Choice Theory that if some “fairness” conditions are imposed
over an aggregation of preferences, it becomes impossible to yield a result. When
the criteria lead to acyclic attack relations, a positive result may ensue under the
same conditions, namely that if the class of winning coalitions in an aggregation
process by voting is a proper prefilter an outcome will exist. This outcome may
preserve some features of the competing attack relations, such as the highly desir-
able property of acyclicity which can be associated with the existence of a single
extension of an argumentation system. The downside of this is that, in fact, the
resulting attack relation must be a portion common to the “hidden dictators” in
the system, that is, all the attack relations that belong to all the winning coalitions.

1 Introduction

Defeasible reasoning relies on the possibility of comparing conclusions in terms of
their support. This support is often given by a set of arguments. Only those arguments
(and consequently their conclusions) that remain undefeated in a series of comparisons
are deemed warranted. While the literature contains alternative formalisms capturing
this intuition [1,2], the groundbreaking work on Abstract Argumentation Frameworks
reported in [3] presents a view according to which all the features that are not essential
for the study of the attack relation in defeasible argumentation are eliminated. What
remains is a system formed by a family of abstract arguments and a relation of attack
among them. Several alternative semantics have been introduced, but the essential idea
is that the set of arguments that survive all possible attacks of other arguments in the
system constitute the so-called extensions of the system and capture its semantics.

One aspect that has received little attention in the literature1 is the possibility of
considering different relations of attack among the same arguments. In this scenario,
the warrant of arguments cannot be established in an unambiguous way without first
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coalescing the multiple attack relation onto a single one acting over the family of argu-
ments. Notice that this ensuing relation does not need to coincide with anyone of those
defined over the arguments. On the other hand, nothing precludes this possibility.

In Economics, the process by which a single preference ordering is obtained given
a class of individual preferences over the same alternatives, it is known as an aggre-
gation of them [5]. Similarly, we can consider that each of the attack relations among
arguments represents an individual criterion of warrant, since it defines which exten-
sions should obtain. Then, the aggregation process weights up the different criteria and
determines which extensions will actually appear, but instead of simply enumerating
extensions, it yields an attack relation that supports them.

While there might exist many ways of doing this, a natural form is by means of pair-
wise voting [6]. That is, each alternative attack relation “votes” over pairs of arguments,
and the winning relation over those two arguments is incorporated in the aggregate at-
tack relation.

But such procedure has been shown to have, in certain contexts, serious shortcom-
ings. It is widely known that it may fail to verify some required constraints over the ag-
gregation process [7,8]. These constraints are actually desiderata for a fair aggregation
process. Social Choice Theory (SCT) has been studying them for over fifty years and it
seems natural to transfer its results to the problem of aggregating attack relations. Ar-
row’s Impossibility Theorem [9] claims that four quite natural constraints, that capture
abstractly the properties of a democratic aggregation process, cannot be simultaneously
satisfied. That is true for the case of reflexive and transitive preference relations over the
alternatives. Once those constraints become incorporated in the framework of argumen-
tation, we could expect something like Arrow’s theorem to ensue. But attack relations
and preference relations are different in many respects. This point must be emphasized,
since it involves the reason why an Arrow-like result may not be a necessary outcome
for argumentation systems. This fact makes our purpose non trivial.

The difference between aggregating individual preferences and attack criteria orig-
inates from their corresponding order-theoretic characterizations. While in Economics
preferences are usually assumed to be weak orders (i.e., reflexive, transitive and com-
plete relations), attack relations are free to adopt any configuration. On the other hand,
preference relations are expected to have maximal elements, while this is not the case
for attack relations. If A attacks B and B attacks C, it is commonly accepted that not
only A does not (necessarily) attack C, but that A “defends” C, which implies that A
and C can be jointly warranted. So, while a preference relation can lead to the choice
of its maximal elements, and attack relation can lead to the choice of a maximal (w.r.t.
⊆) set of “defensible” arguments.

Viewed as criteria of acceptance, the choices should verify at least a minimal degree
of rationality. In SCT that requirement is fulfilled by the condition that chosen options
should not be transitively better than themselves, i.e. they should not be part of cycles
of preference [10]. In the context of attack criteria this condition can be interpreted as
that each of the arguments that will be deemed warranted under a criterion should be
supported by chains of attacks that do not include themselves. A sufficient condition
that ensures this is the acyclicity of the attack relations.2

2 An argumentation framework in which the attack relation is acyclic is said well-founded [3].
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Once we require the acyclicity of the attack relations we look for aggregation pro-
cesses that have as inputs finite numbers of acyclic attack relations and output also
acyclic relations. In that case, as we will show in this paper, under the same conditions
of fairness as Arrow’s Theorem, we can prove the existence of an aggregate attack rela-
tion. In fact, following [7] we show that the class of winning coalitions of attack criteria
constitutes an algebraic structure called a proper prefilter.

As it has been discussed in the literature on Arrow’s Theorem, a prefilter indicates the
existence of a collegium of attack relations. Each member of the collegium belongs to
a winning coalition, while the collegium itself does not need to be one. Each collegium
member, by itself, cannot determine the outcome of the aggregation process, but can
instead veto the behaviors that run contrary to its prescription. The final outcome can
be seen as the agreement of the representatives of the different winning coalitions. In
this sense it indicates a very basic consensus among the attack relations.

In a sense this means that even in the case of “equal opportunity” aggregation proce-
dures there will exist some fragment of the individual attack relations that will become
imposed on the aggregate one. But while in social context this seems rather undesir-
able (in the literature the members of the collegium are called hidden dictators), in the
case of argument systems is far more reassuring, since it indicates that when the attack
relations are minimally rational, a consensual outcome may arise.

2 Aggregating Attack Relations

Dung defines an argumentation framework as a pair AF = 〈AR; →〉, where AR is
a set of abstract entities called ‘arguments’ and →⊆ AR × AR denotes an attack
relation among arguments. This relation determines which sets of arguments become
“defended” from attacks. Different characterizations of the notion of defense yield al-
ternative sets called extensions of AF . These extensions are seen as the semantics of
the argumentation framework, i.e. the classes of arguments that can be deemed as the
outcomes of the whole process of argumentation. Dung introduces the notions of pre-
ferred, stable, complete, and grounded extensions, each corresponding to different re-
quirements on the attack relation.

Definition 1. (Dung ([3])). In any argumentation framework AF an argument σ is said
acceptable w.r.t. a subset S of arguments of AR, in case that for every argument τ such
that τ → σ, there exists some argument ρ ∈ S such that ρ → τ . A set of arguments
S is said admissible if each σ ∈ S is acceptable w.r.t. S, and is conflict-free, i.e., the
attack relation does not hold for any pair of arguments belonging to S. A preferred
extension is any maximally admissible set of arguments of AF . A complete extension
of AF is any conflict-free subset of arguments which is a fixed point of Φ(·), where
Φ(S) = {σ : σ is acceptable w.r.t. S}, while the grounded extension is the least (w.r.t.
⊆) complete extension. Moreover, a stable extension is a conflict-free set S of arguments
which attacks every argument not belonging to S.

Interestingly, if the attack relation is acyclic, the framework has only one extension that
is grounded, preferred stable and complete (cf. [3], theorem 30, pp. 331). The main
application of argumentation frameworks is the field of defeasible reasoning. Roughly,
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arguments are structures that support certain conclusions (claims). The extensions in-
clude the arguments, and more importantly their conclusions, that become warranted
by a reasoning process that considers the attack relation.

We consider, instead, for a given n an extended argumentation framework AFn =
〈AR; →1, . . . , →n〉. Each →i is a particular attack relation among the arguments in
AR, representing different criteria according to which arguments are evaluated one
against another. Such extended frameworks may arise naturally in the context of de-
feasible reasoning, since there might exist more than one criterion of defeat among
arguments.

The determination of preferred, complete or grounded extensions in an argumenta-
tion framework is based upon the properties of the single attack relation. There are no
equivalent notions for an extended argumentation framework, except for those corre-
sponding to an aggregate argumentation framework AF ∗ = 〈AR; F(→1, . . . , →n)〉,
where F(→1, . . . , →n) =→, i.e., F(→1, . . . , →n) is the aggregated attack relation of
AF ∗. That is, AF ∗ is a an argumentation framework in which its attack relation arises
as a function of the attack relations of AFn. Notice that F may be applied over any
extended argumentation framework with n attack relations. It embodies a method that
yields a single attack relation up from n alternatives.

To postulate an aggregate relation addresses the problem of managing the diversity
of criteria, by yielding a single approach. This is of course analogous to a social system,
in which a unified criterion must by reached. While there exist many alternative ways to
aggregate different criteria, most of them are based in some form of voting. In fact, the
best known case of F is majority voting. Unlike political contests in which for each pair
A, B ∈ AR a majority selects either A → B or B → A, we allow for a third alternative
in which the majority votes for the absence of attacks between A and B. Formally:

– A → B if |{i : A →i B}| > max(|{i : B →i A}|, |{i : B �→i A ∧ A �→i B}|).
– B → A if |{i : B →i A}| > max(|{i : A →i B}|, |{i : B �→i A ∧ A �→i B}|).
– (A, B) /∈→ (i.e., A does not attack B, nor B does attack A in →) if |{i : B �→i

A ∧ A �→i B}| > max(|{i : A →i B}|, |{i : B →i A}|).

For instance, if out of 100 individual relations, 34 are such that A attacks B, while
33 verify that B attacks A and the rest that there is no attack relation between A and B,
majority voting would yield that A → B. That is, it only matters which alternative is
verified by more individual relations than the other two.

Example 1. Consider the following framework in which AR = {A, B, C} and the
arguments are:

A : “Symptoms x, y and z suggest the presence of disease d1, so we should apply
therapy t1”;
B : “Symptoms x, w and z suggest the presence of disease d2, so we should apply
therapy t2”;
C : “Symptoms x and z suggest the presence of disease d3, so we should apply therapy
t3”.

Assume these are the main arguments discussed in a group of three agents (M.D.s),
1, 2 and 3, having to make a decision on which therapy should be applied to some
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patient. Suppose that each agent i, i ∈ {1, 2, 3}, proposes an attack relation →i over
the arguments as follows:

– →1= {(A, B), (B, C)} (agent 1 thinks that it is not convenient to make a joint
application of therapies t1 and t2 or t2 and t3; moreover she thinks that B is more
specific than C, hence B defeats C, and that, in the case at stake, symptom y is
more clearly present than symptom w. Hence A defeats B),

– →2= {(A, C), (B, C)} (agent 2 thinks that it is not convenient to apply therapies
t1 together with t3 or t2 joint with t3; moreover she thinks that symptoms y and
w are equally present in the case at stake. Furthermore, both A and B are more
specific than argument C, hence both A and B defeat C),

– →3= {(A, C), (C, B)} (agent 3 thinks that it is not convenient to apply t1 together
with t3 or t2 with t3; moreover she thinks that symptom w is not clearly detectable,
hence C defeats B, but A is more specific than C, hence A defeats C).

According to majority voting we obtain → over AR:

– A → C since A attacks C under →2 and →3.
– B → C since B attacks C under →1 and →2.
– (A, B) /∈→ since (A, B) /∈→2 and (A, B) /∈→3.

In this example, majority voting picks out one of the individual attack relations, showing
that →=→2.3

On the other hand, majority voting may yield cycles of attacks up from acyclical
individual relations:

Example 2. Consider the following three attack relations over the set AR = {A, B, C}:
C →1 B →1 A, A →2 C →2 B, and B →3 A →3 C. We obtain → over AR as
follows:

– A → C since A attacks C under →2 and →3.
– B → A since B attacks C under →1 and →3.
– C → B since C attacks B under →1 and →2.

Thus, → yields a cycle A → C → B → A. This phenomenon is known in the
literature on voting systems as the Condorcet’s Paradox and it shows clearly that even
the most natural aggregation procedures may have drawbacks.

Another way of aggregating attack relations is by restricting majority voting to a qual-
ified voting aggregation function. It fixes a given class of relations as those that will
have more weight in the aggregate. Then, the outcome of majority voting over a pair of
arguments is imposed on the aggregate only if the fixed attack relations belong to the
majority. Otherwise, in the attack relation none of the arguments attacks the other. That
is, given a set U ⊂ {1, . . . , n}:

3 In any of the extension semantics introduced by [3], arguments A and B become justified
under the aggregate attack relation, supporting the decision of applying both therapies t1
and t2.
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– A → B iff |{i : A →i B}| > max(|{i : B →i A}|, |{i : B �→i A ∧ A �→i B}|) and
U ⊆ {i : A →i B}.

– B → A iff |{i : B →i A}| > max(|{i : A →i B}|, |{i : B �→i A ∧ A �→i B}|) and
U ⊆ {i : B →i A}.

(A, B) /∈→ (i.e., A does not attack B, nor B does attack A in →) can arise as follows:

– either |{i : B �→i A ∧ A �→i B}| > max(|{i : A →i B}|, |{i : B →i A}|) and
U ⊆ {i : B �→i A ∧ A �→i B},

– or if U is not a subset of either {i : A →i B}, {i : B →i A} or {i : B �→i A ∧ A �→i B}.

Example 3. Consider again the individual attack relations in Example 1. If U = {2, 3}
we have that A → C, since A →2 C and A →3 C. Again (A, B) /∈→ because
(A, B) /∈→2 and (A, B) /∈→3. But we have also that (B, C) /∈→ because although
there exists a majority for B attacking C ({1, 2}), C →3 B, i.e., there is no consensus
among the members of U on B and C.

3 Arrow’s Conditions on Aggregation Functions

While different schemes of aggregation of attack relations can be postulated, most of
SCT, up from the seminal work of Kenneth Arrow [9] points towards a higher degree of
abstraction. Instead of looking for particular functional forms, the goal is to set general
constraints over aggregation processes and see if they can be jointly fulfilled. We carry
out a similar exercise in the setting of extended argumentation frameworks, in order
to investigate the features of aggregation processes that ensure that a few reasonable
axioms are satisfied.

Social choice-theoretic analysis can be carried out in terms of an aggregation process
that, up from a family of weak orders (complete, transitive and reflexive orderings),
yields a weak order over the same set of alternatives. This is because both individual and
social preference relations are represented as weak orders. But attack relations cannot
be assimilated to preference orderings, since attacks do not verify necessarily any of the
conditions that define a weak order.4 Therefore, the difference of our setting with the
usual Arrovian context is quite significant.

Let us begin with a few properties that, very much like in SCT, we would like to be
verified in any aggregation function. Below, we will use the alternative notation →F
instead of F(→1, . . . , →n) when no confusion could arise.

– Pareto condition. For all A, B ∈ AR if for every i = 1, . . . , n, A →i B then
A→F B.

– Positive Responsiveness. For all A, B ∈ AR, and two n-tuples of attack relations,
(→1, . . . , →n), (→′

1, . . . , →
′

n), if {i : A →i B} ⊆ {i : A →′

i B} and A→F B,
then A→′

F B, where →′

F = F(→′

1, . . . , →
′

n).
4 So for instance, reflexivity in an attack relation would mean that each argument attacks itself.

While isolated cases of self-attack may arise, this is not a general feature of attack relations.
The same is true of transitivity that means that if, say A → B and B → C then A → C. In
fact, in many cases of interest, A → B → C can be interpreted as indicating that A defends
B. Finally, completeness is by no means a necessary feature of attacks, since there might exist
at least two arguments A and B such that neither A → B and B → A.



14 F.A. Tohmé, G.A. Bodanza, and G.R. Simari

– Independence of Irrelevant Alternatives. For all A, B ∈ AR, and given two n-
tuples of attack relations, (→1, . . . , →n), (→′

1, . . . , →
′

n), if →i=→′

i for each i,
over (A, B), then →F = →′

F over (A, B).
– Non-dictatorship. There does not exist i0 such that for all A, B ∈ AR and every

(→1, . . . , →n), if A →i0 B then A→F B.

All these requirements were intended to represent the abstract features of a demo-
cratic collective decision-making system. While in our setting this does no longer apply,
we still consider that an aggregation function should yield a fair representative of the
whole class of attack relations. Let us see why these conditions imply the fairness of
the aggregation process.5

The Pareto condition indicates that if all the attacks relations coincide over a pair of
arguments, the aggregate attack should also agree with them. That is, if all the individ-
ual attack relations agree on some arguments, this agreement should translate into the
aggregate attack relation.

The positive responsiveness condition just asks that the aggregation function should
yield the same outcome over a pair of arguments if some attack relation previously
dissident over them, now change towards an agreement with the others. It can be better
understood in terms of political elections: if a candidate won an election, she should
keep winning in an alternative context in which somebody who voted against her now
turns to vote for her.

The axiom of independence of irrelevant alternatives just states that if there is an
agreement over a pair of arguments among alternative n-tuples of attacks, this should
be also be true for the aggregation function over both n-tuples. Again, some intuition
from political elections may be useful. If the individual preferences over two candidates
a and b remain the same when a third candidate c arises, the rank of a and b should be
the same in elections with and without c. That is, the third party should be irrelevant to
the other two.

Finally, the non-dictatorship condition just stipulates that no fixed entry in the
n-tuples of attacks should become the outcome in every possible instance. That is,
there is no ‘dictator’ among the individual attack relations. We have the following
proposition:

Proposition 1
Both the majority and the qualified voting (with |U | ≥ 2) aggregation functions verify
trivially the four axioms.

PROOF

Majority voting:

– (Pareto): if for all A, B ∈ AR if for every i = 1, . . . , n, A →i B then trivially
|{i : A →i B}| > max(|{i : B →i A}|, |{i : B �→i A ∧ A �→i B}|) which in
turns implies that A→F B.

5 Whether fairness is exactly captured by these requirements is still debated in the philosophy of
Social Choice. Nevertheless, there exists a consensus on that they are desirable conditions for
an aggregation function.
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– (Positive responsiveness): if for all A, B ∈ AR, and two n-tuples of attack re-
lations, (→1, . . . , →n), (→′

1, . . . , →
′

n), if A→F B, this means that |{i : A →i

B}| > max(|{i : B →i A}|, |{i : B �→i A ∧ A �→i B}|) and therefore, if
{i : A →i B} ⊆ {i : A →′

i B} it follows that |{i : A →′

i B}| > max(|{i :
B →′

i A}|, |{i : B �→′

i A ∧ A �→′

i B}|) which in turn implies that A→′

F B.
– (Independence of Irrelevant Alternatives): suppose that for any given A, B ∈ AR,

and two n-tuples of attack relations, (→1, . . . , →n), (→′

1, . . . , →
′

n), →i=→′

i for
each i, over (A, B). Without loss of generality assume that |{i : A →i B}| >
max(|{i : B →i A}|, |{i : B �→i A ∧ A �→i B}|) then, A→F B. But then
|{i : A →′

i B}| > max(|{i : B →′

i A}|, |{i : B �→′

i A ∧ A �→′

i B}|), which
implies that A→′

F B. That is, →F = →′

F over (A, B).
– (Non-dictatorship): suppose there where a i0 such that for all A, B ∈ AR and

every (→1, . . . , →n), if A →i0 B then A→F B. Consider in particular that
A →i0 B while |{i : B →i A}| = n − 1, i.e. except i0 all other attack rela-
tions have B attacking A. But then B →F A. Contradiction.

The proof for qualified voting, when |U | ≥ 2, is quite similar:

– (Pareto): if for all A, B ∈ AR if for every i = 1, . . . , n, A →i B then trivially
|{i : A →i B}| > max(|{i : B →i A}|, |{i : B �→i A ∧ A �→i B}|) and
U ⊆ {i : A →i B} which implies that A→F B.

– (Positive responsiveness): if for all A, B ∈ AR, and two n-tuples of attack re-
lations, (→1, . . . , →n), (→′

1, . . . , →
′

n), if A→F B, this means that |{i : A →i

B}| > max(|{i : B →i A}|, |{i : B �→i A ∧A �→i B}|) and U ⊆ {i : A →i B}.
Therefore, if {i : A →i B} ⊆ {i : A →′

i B} it follows that |{i : A →′

i B}| >

max(|{i : B →′

i A}|, |{i : B �→′

i A ∧ A �→′

i B}|) and U ⊆ {i : A →i
i B} which

in turn implies that A→′

F B.
– (Independence of Irrelevant Alternatives): suppose that for any given A, B ∈ AR,

and two n-tuples of attack relations, (→1, . . . , →n), (→′

1, . . . , →
′

n), →i=→′

i for
each i, over (A, B). Without loss of generality assume that |{i : A →i B}| >
max(|{i : B →i A}|, |{i : B �→i A ∧ A �→i B}|) and U ⊆ {i : A →i B}
then, A→F B. But then |{i : A →′

i B}| > max(|{i : B →′

i A}|, |{i : B �→′

i

A ∧ A �→′

i B}|) and also U ⊆ {i : A →′

i B} which implies that A→′

F B. That
is, →F = →′

F over (A, B).
– (Non-dictatorship): suppose there where a i0 such that for all A, B ∈ AR and

every (→1, . . . , →n), if A →i0 B then A→F B. Consider in particular that
A →i0 B while |{i : B →i A}| = n − 1, i.e. except i0 all other attack rela-
tions have B attacking A. If i0 /∈ U , B →F A, while if i0 ∈ U , (A, B) /∈ →F . In
either case we have a contradiction.

�

While qualified voting seems in certain sense less fair than majority voting it can be
shown that it is not prone to phenomena like Condorcet’s Paradox:

Proposition 2
If F is a qualified voting aggregation function and each →i is acyclic, then →F is
acyclic.



16 F.A. Tohmé, G.A. Bodanza, and G.R. Simari

PROOF

Suppose that →F has a cycle of attacks, say A0 →F A1 →F . . . →F Ak →F A0. By
definition of qualified voting, for j = 0 . . . k − 1 Aj →F Aj+1 if and only if U ⊆ {i :
Aj →i Aj+1}. By the same token, Ak →F A0 iff

U ⊆ {i : Ak →i A0}.

That is, for each i ∈ U , A0 →i A1→i . . . →i Ak→i A0. But this contradicts that each
individual attack relation is acyclic. �

4 Decisive Sets of Attack Relations

The aggregation function determines a class of decisive sets (i.e., winning coalitions) of
attack relations. Interestingly, the structure of this class exhibits (in relevant cases) clear
algebraic features that shed light on the behavior of the aggregation function. Formally:
Ω ⊂ {1, . . . , n} be a decisive set if for every possible n-tuple (→1, . . . , →n) and every
A, B ∈ AR, if A →i B, for every i ∈ Ω, then A→F B (i.e., A F(→1, . . . , →n) B).
As we have already seen in the case of qualified voting aggregation functions, if not
every member of a decisive set agrees with the others over a pair of arguments, the
aggregate attack relation should not include the pair. But this is so unless any other
decisive set can force the pair of arguments into the aggregate attack relation.6

Example 4. In Example 1, each of {1, 2}, {2, 3} is a decisive set, since they include
more than half of the agents that coincide with pairs of attacks in the aggregate attack
relation. On the other hand, for the qualified voting function of Example 3, U = {2, 3}
is decisive, but not {1, 2} or {1, 3}.

If we recall that the U is a decisive set for qualified voting, we can conjecture that there
might exist a close relation between the characterization of an aggregation function and
the class of its decision sets. Furthermore, if a function verifies Arrow’s axioms and
yields an acyclic attack relation up from acyclic individual attack relations, it can be
completely characterized in terms of the class of its decision sets:

Proposition 3
Consider an aggregate attack relation F that for every n-tuple (→1, . . . , →n) of acyclic
attack relations yields an acyclic →F . It verifies the Pareto condition, Positive Respon-
siveness, Independence of Irrelevant Alternatives, and Non-Dictatorship if and only if
its class of decisive sets Ω̄ = {Ωj}j∈J verifies the following properties:

– {1, . . . , n} ∈ Ω̄.

– If O ∈ Ω̄ and O ⊆ O′ then O′ ∈ Ω̄.

– Given Ω̄ = {Ωj}j∈J , where J = |Ω̄|, ∩Ω̄ =
⋂J

j=1 Ωj �= ∅.

– No O ∈ Ω̄ is such that |O| = 1.

6 Of course, in a qualified voting function U is always a decisive set.
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PROOF

(⇒)
We will begin our proof noticing that |Ω̄| ≤ 2n. That is, it includes only a finite number
of decisive sets. Then, by Pareto, the grand coalition {1, . . . , n} must be decisive. On
the other hand, by Positive Responsiveness, if a set O is decisive and O ⊆ O′, if the at-
tack relations in O′ \O agree with those in O, the result will be the same, and therefore
O′ becomes decisive too.

By Independence of Irrelevant Alternatives, if over a pair of arguments A, B, the
attack relations remain the same then the aggregate attack relation will be the same
over A, B. We will prove that this implies that ∩Ω̄ �= ∅. First, consider the case where
at least two decisive sets O, W ∈ Ω̄ are such that O ∩ W = ∅. Suppose furthermore
that O determines →F up from {→i}n

i=1 while W defines →F
′

up from {→′

i}n
i=1.

Then, if over A, B →i=→′

i then →F = →F
′

over A, B. But then, since there is no
element common to O and W , the choice over A, B will differ from →F to →F

′
.

Contradiction. Furthermore, if ∩Ω̄ = ∅, then there is no ī such that →F ⊆→ī. But
then, →F includes other attacks than those in each individual attack relation. Without
loss of generality, consider an extended argument framework over n arguments and a
profile in which the attack relations over them is such that each of them constitutes a
linear chain of attacks:

– A1 →1 A2. . . →1 An,
– A2 →2 . . .An →2 A1,
– . . .,
– An →n A1. . . →n An−1.

Then, over each pair Aj , Ak, →F has to coincide with some of the individual attack
relations. In particular for each pair of arguments Aj , Aj+1. But also on An, A1. But
then, →F yields a cycle (see Example 2): A1 →F A2 . . . →F An →F A1 But this con-
tradicts the assumption that →F is acyclic. Then, ∩Ω̄ �= ∅.

Finally, a dictator i0 is such that {i0} ∈ Ω̄. Therefore, non-dictatorship implies that
there is no O ∈ Ω̄ such that |O| = 1.

(⇐)
The Pareto condition follows from the fact that {1, . . . , n} ∈ Ω̄. That is, if for a given
pair A, B ∈ AR, A →i B for every i = 1, . . . , n, since {1, . . . , n} is decisive, it
follows that A→F B.

Positive Responsiveness follows from the fact that if O is decisive and O ⊆ O′, O′

is also decisive. This is so since, given any A, B ∈ AR, and two n-tuples of attack
relations, (→1, . . . , →n), (→′

1, . . . , →
′

n), if {i : A →i B} ⊆ {i : A →′

i B} and
A→F B, then {i : A →i B} is decisive, and therefore {i : A →′

i B} is also decisive,
and then A→′

F B.
Independence of Irrelevant Alternatives obtains from the fact that ∩Ω̄ �= ∅. Suppose

this were not the case. That is, there exists a pair A, B ∈ AR, and two n-tuples of
attack relations, (→1, . . . , →n), (→′

1, . . . , →
′

n), such that →i=→′

i over (A, B), but
→F �= →′

F over (A, B). Consider ī ∈ ∩Ω̄ �= ∅. That is ī belongs to every decisive
set. Then if, without loss of generality, A →ī B then A→F B, but also, since A →′

ī
B,

we have that A→′

F B. Contradiction.



18 F.A. Tohmé, G.A. Bodanza, and G.R. Simari

Non-dictatorship follows from the fact that no set with a single criterion is decisive
and therefore, no single attack relation can be imposed over the aggregate for every
profile of attack relations.

Finally, notice that since there exists ī ∈ ∩Ω̄ over each pair of arguments A, B,
→F either coincides with →ī or (A, B) /∈ →F . Since →ī has no cycles of attacks,
→F will also be acyclic. �

When Ω̄ satisfies the properties described in Proposition 3, we say that Ω̄ is a proper
prefilter over {1, . . . , n} [7]. Moreover, if the class of decision sets for an aggregation
function has this structure, it aggregates acyclic attack relations into an acyclic relation,
verifying Arrow’s conditions.

Example 5. Over {→1, →2, →3} (or {1, 2, 3}, for short), the only possible proper pre-
filters are:

– Ω̄I = {{1, 2}, {1, 2, 3}}.

– Ω̄II = {{1, 3}, {1, 2, 3}}.

– Ω̄III = {{2, 3}, {1, 2, 3}}.

– Ω̄IV = {{1, 2}, {2, 3}, {1, 2, 3}}.

– Ω̄V = {{1, 3}, {2, 3}, {1, 2, 3}}.

– Ω̄V I = {{1, 2}, {1, 3}, {1, 2, 3}}.

Notice that the corresponding aggregation functions FI , FII and FIII are qualified
voting functions. To see how the other three functions act, just consider FIV over A →1
B →1 C, A →2 C , B →2 C, and A →3 C →3 B. Then, →F = FIV (→1, →2, →3)
is defined as follows:

– A→F C since while there is no agreement in {1, 2}, {2, 3} agree in that A attacks
C.

– B →F C since B attacks C in →1 and →2, but there is no agreement in {2, 3}.
– (A, B) /∈ →F since (A, B) /∈→2 and (A, B) /∈ →F 3, but there is no agreement

in {1, 2}.

That means that FIV behaves in the same manner as a majority function over the fol-
lowing profile: (→1, →2, →3). The same conclusion can be drawn for FV and FV I .

Notice that, FIV is actually a majority function only in the case that →F is acyclic.
That is, it behaves like the majority function in well-behaved cases. Instead, for the in-
dividual attack relations in Example 2 it yields an acyclic order A→F C →F B, which
is not the outcome of the majority function. Therefore, we should actually say that
FIV , FV and FV I are acyclic majority functions. Notice that any ī ∈ ∩Ω̄ is kind of a
“hidden dictator”, in the sense made precise in the following result:

Proposition 4
If ī ∈ ∩Ω̄, and FΩ̄ is the aggregation function characterized by the prefilter then
Ω̄, →FΩ̄

⊆→ī.
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PROOF

Suppose that given A, B ∈ AR, we have, without loss of generality, that A →ī B.
Let us consider two cases:

– There exists a decisive set O ∈ Ω̄ such that for every i ∈ O (by definition ī ∈ O),
A →i B. Then A→FΩ̄

B, and therefore →FΩ̄
coincides with →ī over (A, B).

– There does not exist any decisive set O in which for every i ∈ O, A →i B. Then,
neither A→FΩ̄

B nor B →FΩ̄
A can obtain. Therefore ī vetoes B →i A, although

it cannot imposes A → B. In this case →FΩ̄
⊂→ī over (A, B).

�

We will consider now the question of Aggregation and Cycles of Attack. The analysis
of argumentation systems is usually carried out in terms of their extensions. The ex-
istence and properties of the extensions can be ascertained according to the properties
of the attack relation. In the case that several alternative attack relations compete over
the same class of arguments, the class of extensions may vary from one to another. The
structure of extensions of such an argumentation system should not be seen as just the
enumeration of the classes corresponding to each attack relation but should arise from
the same aggregation process we have discussed previously. That is, it should follow
from the properties of the aggregate attack relation.

In particular, since our main results concern the aggregation of acyclic attack rela-
tions into an acyclic aggregate one, we will focus on the case of well-founded argu-
mentation frameworks (cf. [3], p. 10). We can say, roughly, that their main feature is
the absence of cycles of attack among their arguments. For them, all the types of exten-
sions described by Dung coincide. Furthermore, they all yield a single set of arguments
(cf. [3], theorem 30, p. 331). To see how such a single extension of an argument system
over a family of individual attack relations may obtain, let us recall that if for each i, →i

has no cycles of attack, an aggregate relation →FΩ̄
, obtained through an aggregation

function F with a prefilter of decisive sets Ω̄, is acyclic as well. The following result is
an immediate consequence of this claim.

Proposition 5
Consider an aggregate argument framework AF ∗ = 〈AR; F(→1, . . . , →n)〉. If each
→i (i = 1, . . . , n) is acyclic and F is such that its corresponding class of decisive
sets Ω̄ is a prefilter, then →F = F(→1, . . . , →n) is acyclic and AF ∗ has a single
extension which is grounded, preferred and stable.

Furthermore:

Corollary 1. If AF ∗ = 〈AR; F(→1, . . . , →n)〉 has a single extension when each →i

(i = 1, . . . , n) is acyclic, then if F is such that its corresponding class of decisive sets
Ω̄ is a prefilter, it also verifies the Pareto condition, Positive Responsiveness, Indepen-
dence of Irrelevant Alternatives, and Non-Dictatorship.

PROOF

Immediate. If AF ∗ has a single extension and F is such that its corresponding class of
decisive sets Ω̄ is a prefilter, then by Proposition 5 the aggregate attack →F is acyclic.
Then, the claim follows from Proposition 3. �
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5 Discussion

As indicated by Brown in [11], the fact that the class of decisive sets constitutes a
prefilter is an indication of the existence of a collegium. In SCT this means a kind of
“shadow” decisive set, being its members interspersed among all the actual decisive
sets. Their actual power comes not from being able to enforce outcomes but from their
ability to veto alternatives that are not desirable for them. In the current application,
the existence of a collegium means that there exists a class of attack relations that by
themselves cannot determine the resulting attack relation, but can instead block (veto)
alternatives.

This feature still leaves many possibilities open, but as our examples intended to
show, there are few aggregation functions that may adopt this form, while at the same
time verifying the conditions postulated by Arrow for fair aggregation functions. The
main instance is constituted by the acyclic majority function, but qualified voting func-
tions yield also fair outcomes. The difference is that with the acyclic majority functions
one of the several attack relations in AFn is selected, while with qualified voting func-
tions, new attack relations may arise. But these new attack relations just combine those
of the winning coalitions, and therefore can be seen as resulting from the application
of generalized variants of the majority function. That is, if two or more rules belong to
all the decisive sets, their common fragments plus the non-conflicting ones add up to
constitute the aggregate attack relation. In a way or another, the attack relations that are
always decisive end up acting as hidden dictators in the aggregation process.

Explicit dictators arise in aggregation processes in other branches of non-monotonic
reasoning. Doyle and Wellman [12], in particular, suggested to translate Reiter’s de-
faults into total preorders of autoepistemic formulas, representing preferences over
worlds. Reasoning with different defaults implies to find, first, the aggregation of the
different preorders. These authors show that it is an immediate consequence of Arrow’s
theorem that no aggregation function can fulfill all the properties that characterize fair-
ness (i.e., the equivalents of the Pareto condition, Positive Responsiveness, Indepen-
dence of Irrelevant Alternatives, and Non-Dictatorship). In terms of decisive sets, it
means that Ω̂ constitutes a principal ultrafilter.7 Since the number of defaults is as-
sumed to be finite, it follows that there exists one of these default rules, say R∗ that
belongs to each U ∈ Ω̂. Of course, the existence of R∗ violates the Non-Dictatorship
condition, and consequently the actual class of formulas that arise in the aggregation
are determined by R∗.

It can be said that Doyle and Wellman’s analysis is concerned with the generation
of a class of arguments arising from different default rules while we, instead, concen-
trate on the comparison among arguments in an abstract argumentation framework. But
Dung [3] has shown that Reiter’s system can be rewritten as an argumentation frame-
work, and therefore both approaches can be made compatible. In this sense, Doyle and
Wellman’s result can be now interpreted as indicating that Ω̄ (over attack relations) is
not a proper prefilter over {1, . . . , n} (where these indexes range over the attack rela-
tions determined each by a corresponding default rule). Instead, as said, it constitutes a

7 Notice that Ω̂ denotes the decisive set over default rules and therefore should not be confused
with Ω̄, the class of decisive sets over attack relations.
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principal ultrafilter and therefore it implies the existence of a “dictatorial” attack rela-
tion, that is imposed over the framework.

Finally, the approach most related to ours is Coste-Marquis et al. [4], which already
presented some early ideas on how to merge Dung’s argumentation frameworks. The
authors’ aim is to find a set of arguments collectively warranted, addressing two main
problems. One is the individual problem faced by each agent while considering a set
of arguments different to that of other agents. The other is the aggregate problem of
getting the collectively supported extension. The second one is the most clearly related
to our approach, but differs in that the authors postulate a specific way of merging the
individual frameworks.

The approach is based on a notion of distance between partial argumentation frame-
works (PAFs, each one representing one agent’s criterion) over a common set of argu-
ments A. Each partial argumentation framework is defined by three binary relations R,
I and N over A: R is the attack relation sanctioned by the agent, I includes the pairs of
arguments about which the agent cannot establish any attacks, and N = (A×A)\R∪I .
A pseudo-distance d between PAFs over A is a mapping that associates a real number
to each pair of PAFs over A and satisfies the properties of symmetry (d(x, y) = d(y, x))
and minimality (d(x, y) = 0 iff x = y). d is a distance if it satisfies also the triangular
inequality (d(x, y)≤ d(x, y) + d(y, z)). These mappings give a way of measuring how
“close” is a collective framework from a given profile.

In a further step the authors define an aggregation function as a mapping from (R+)n

to (R+) that satisfies non-decreasingness (if xi ≥ x′
i), then ⊗(x1, . . . , xi, . . . , xn) ≥

⊗(x1, . . . , x
′
i, . . . , xn), minimality (⊗(x1, . . . , xn) = 0 if ∀i xi = 0), and identity

(⊗(x) = x). The idea is that merging a profile of AFs is a two-step process: first,
to compute an expansion of each AFi over the profile; and second, a fusion in which
the AFs over A that are selected as result of the merging are the ones that are the
“closest” to the profile. We are currently trying to establish a formal relation between
this approach and our results about decisive sets of agents, in particular to determine
whether Coste-Marquis et al.’s aggregation procedure satisfies the Arrovian properties.

6 Further Work

A relevant question arises from our analysis of the semantics of aggregate frameworks
when the attack relations are acyclic. Namely, whether there exist a sensible notion of
aggregation of extensions that could correspond to the aggregation of attack criteria. In
this paper we have focused on the path that goes from several attack relations to a single
aggregate one and from it to its corresponding extension.

An open question is whether it is possible to go through the alternative path from
several attack relations to their corresponding extensions and from there on to a single
family of extensions. If, furthermore, these two alternative paths commute (in category-
theoretic terms), the aggregation of attack relations would be preferable in applications
since it is simpler to aggregate orderings than families of sets.

Nevertheless, there are reasons to be pessimistic, due to the similarities between this
problem and the aggregation of judgments for which List and Pettit have found neg-
ative results [13]. They consider the so-called “discursive dilemma” in which several
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judgments (i.e., pairs of the form 〈premises, conclusion〉), are aggregated component-
wise, that is, a pair formed by an aggregated premises set and an aggregated conclusion
is obtained, but it does not constitute an acceptable judgment. It could happen that sim-
ilar problems may arise while trying to match aggregated attack criteria and aggregated
extensions.

Pigozzi [14] postulates a solution to the discursive dilemma based on the use of oper-
ators for merging belief bases in AI [15]. To pose a merge operation as an aggregation
one involves to incorporate a series of trade-offs among the several alternatives that
hardly will respect Arrow’s conditions, as it is well known in the literature on political
systems (see [16]). In relation to this issue, a wider point that we plan to address is to
systematize the non-fair aggregation procedures that could be applied to the aggregation
of attack relations in argument frameworks. The idea would be to lesser the demands
on the aggregation function and to see which features arise in the aggregate. It seems
sensible to think that depending on the goals of the aggregation process, one or another
function should be chosen.

Another question to investigate is the connections between the correspondence of the
aggregate attack relation among arguments and the relation of dominance among alter-
natives ([17]). From a SCT view, alternative A dominates alternative B iff the number
of individuals for which A is preferred to B is larger than the number of individuals for
which B is preferred to A. This implies that the dominance relation is asymmetric. Al-
though it is not commonly assumed in the literature that attack relations are asymmetric,
it follows from our definition of majority voting over pairs of arguments that the result-
ing attack relations will have this property (even when cycles of order > 2 may occur).
Dominance relations lead to the choice of stable sets. A stable set is such that none
of its elements dominate another, and every alternative outside the set is dominated by
some of its elements. The correspondence between stable semantics in argumentation
frameworks and stable sets was previously studied by Dung ([3]). It is natural, so, to
inquire about the relationship between our majoritarian voting aggregation mechanism
on attack relations and stable sets in argumentation frameworks.
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