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Research in Logic Programming, Nonmonotonic 
Reasoning, and Argumentation has obtained 
important results, providing powerful tools for 
knowledge representation and Common Sense 
reasoning.

We will introduce Defeasible Logic 
Programming (DeLP), a formalism that 
combines results of Logic Programming and 
Defeasible Argumentation.

Introduction

DeLP

Intelligent 
Agents

Multi-Agent 
Systems

Logic 
Programming Argumentation
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DeLP adds the possibility of representing 
information in the form of weak rules in a 
declarative manner and a defeasible 
argumentation inference mechanism for 
warranting the conclusions that are entailed.

Weak rules represent a key element for 
introducing defeasibiliy and they are used to 
represent a defeasible relationship between 
pieces of knowledge.

This connection could be defeated after all 
things are considered. 

Introduction
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General Common Sense reasoning should 
be defeasible in a way that is not explicitly 
programmed. 

Rejection should be the result of the global 
consideration of the corpus of knowledge 
that the agent performing such reasoning 
has at his disposal.

Defeasible Argumentation provides a way of 
doing that.

Introduction

Defeasible Logic 
Programming
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DeLP considers two kinds of program rules: 
defeasible rules to represent tentative information 
such as

∼flies(dumbo) elephant(dumbo)

and strict rules used to represent strict knowledge 
such as

mammal(idéfix) ← dog(idéfix)
Syntactically, the symbol “ ” is all that 
distinguishes a defeasible rule from a strict one.
Pragmatically, a defeasible rule is used to 
represent knowledge that could be used when 
nothing can be posed against it.

DeLP’s Language
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Facts and Strict Rules
A Fact is a ground literal: innocent(joe)
A Strict Rule is denoted:

L0 ← L1, L2 , …, Ln

where L0 is a ground literal called the Head of the rule 
and L1, L2, …, Ln are ground literals which form its 
Body.
This kind of rule is used to represent a relation 
between the head and the body which is not 
defeasible. 
Examples:

∼guilty(joe) ← innocent(joe)
mammal(garfield) ← cat(garfield)
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Defeasible Rules
A Defeasible Rule is denoted:

L0 L1, L2, …, Ln

where L0 is a ground literal called the Head of the rule and    
L1, L2, …, Ln are ground literals which form its Body.
This kind of rule is used to represent a relation between the  
head and the body of the rule which is tentative and its 
intuitive interpretation is:
“Reasons to believe in L1, L2, …, Ln are reasons to 

believe in L0”
Examples:

flies(tweety) bird(tweety)
∼good_weather(today) low_pressure(today), wind(south)
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Defeasible Rules
Defeasible rules are not default rules.

In a default rule such as   ϕ : ψ1, ψ2, …, ψn / χ the 
justification part, ψ1, ψ2, …, ψn, is a consistency check that 
contributes in the control of the applicability of this rule.

The effect of a defeasible rule comes from a dialectical 
analysis made by the inference mechanism. 

Therefore, in a defeasible rule there is no need to encode 
any particular check, even though could be done if 
necessary.

Change in the knowledge represented using DeLP’s 
language is reflected with the sole addition of new 
knowledge to the representation, thus leading to better 
elaboration tolerance.
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Defeasible Logic Program
A Defeasible Logic Program (delp) is a set of facts, strict 
rules and defeasible rules denoted P = (Π, ∆) where

Π is a set of facts and strict rules, and
∆ is a set of defeasible rules.

Facts, strict, and defeasible rules are ground.
However, we will use “schematic rules” containing variables.
If R is a schematic rule, Ground(R) stands for the set of all 
ground instances of R and 

Ground(P) = ∪R∈P Ground(R)

in all cases the set of individual constants in the language of 
P will be used (see V. Lifschitz, Foundations of Logic Programming, in 
Principles of Knowledge Representation, G. Brewka, Ed., 1996, folli)
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Defeasible Logic Programming: DeLP
Here is an example of a Defeasible Logic Program (delp) 

denoted  P = (Π, ∆)

bird(X) ← chicken(X) chicken(tina) 
bird (X) ← penguin(X) penguin(opus) 
∼flies(X) ← penguin(X) scared(tina)

flies(X) bird(X)
∼flies(X) chicken(X)
flies(X) chicken (X), scared(X)

Strict 
Rules Facts

Defeasible 
Rules

Π

∆

Ground(flies(X) bird(X)) = { flies(tina) bird(tina), 
flies(opus) bird(opus) }
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Defeasible Logic Programming: DeLP
Here is another example of a P = (Π, ∆)

has_a_gun(X) lives_in_chicago(X) 
∼has_a_gun(X) lives_in_chicago(X), 

pacifist(X)
pacifist(X) quaker(X)
∼pacifist(X) republican(X)

lives_in_chicago(nixon)
quaker(nixon)
republican(nixon)

Facts

Defeasible 
Rules

Π

∆

Adapted from Prakken and Vreeswijk (2000)
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Defeasible Logic Programming: DeLP
Another example of a P = (Π, ∆)

buy_shares(X) good_price(X) 
∼buy_shares(X) good_price(X), risky(X)
risky(X) in_fusion(X, Y)
risky(X) in_debt(X)
∼risky(X) in_fusion(X, Y), strong(Y)

good_price(acme) 
in_fusion(acme, estron) 
strong(estron)

Facts

Defeasible 
Rules

Π

∆
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Defeasible Derivation
Def: Let P = (Π, ∆) be a delp and L a ground literal.          

A defeasible derivation of L from P, denoted P L, 
is a finite sequence of ground literals 

L1, L2, ..., Ln = L, 

such that each literal Lk in the sequence is there 
because:

Lk is a fact in Π, or 

there is a rule (strict or defeasible) in P with 
head  Lk and body  B1, B2, ..., Bj, where every 
literal Bj in the body is some Li appearing 
previously in the sequence ( i < k ).
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Defeasible Derivation

Notice that defeasible derivation differs from 
standard logical or strict derivation only in the 
use of defeasible, or weak, rules.

Given a Defeasible Logic Program, a derivation 
for a literal L is called defeasible because there 
may exist information in contradiction with L, or 
the way that L is derived, that will prevent the 
acceptance of L as a valid conclusion.

A few examples of defeasible derivation follow.
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Defeasible Derivation
From the program:

bird(X) ← chicken(X) chicken(tina) 
bird(X) ← penguin(X) penguin(opus) 
∼flies(X) ← penguin(X) scared(tina)
flies(X) bird(X)
∼flies(X) chicken(X)
flies(X) chicken(X), scared(X)

The following derivations could be obtained:

chicken(tina), bird(tina), flies(tina) 
chicken(tina), ∼flies(tina) 
chicken(tina), scared(tina), flies(tina) 
penguin(opus), bird(opus), flies(opus) 
penguin(opus), ∼flies(opus)

G.R.Simari, ICLP 2004 19

From the program:
buy_shares(X) good_price(X) 
∼buy_shares (X) good_price(X), risky(X)
risky(X) in_fusion(X, Y)
risky(X) in_debt(X)
∼risky(X) in_fusion(X, Y),  strong(Y)
good_price(acme) 
in_fusion(acme, estron) 
strong(estron)

The following derivations could be obtained:
good_price(acme), buy_shares(acme)
in_fusion(acme, estron), risky(acme), good_price(acme),
∼buy_shares(acme)
in_fusion(acme, estron), risky(acme)
in_fusion(acme, estron), strong(estron), ∼risky(acme)

Defeasible Derivation
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Programs and Derivations
A program P = (Π, ∆) is contradictory if it is possible to 
derive from that program a pair of complementary literals.

Note that from the programs given as examples it is 
possible to derive pairs of complementary literals, such 
as flies(tina), ∼flies(tina) and flies(opus), ∼flies(opus)
from the first one, and risky(acme), ∼risky(acme) and
buy_shares(acme), ∼buy_shares(acme) from the second.

Contradictory programs are useful for representing 
knowledge that is potentially contradictory.

On the other hand, as a design restriction, the set Π
should not be contradictory, because in that case the 
represented knowledge would be inconsistent.
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Defeasible Argumentation

Def: Let L be a literal and P = (Π, ∆) be a program.        
We say that A is an argument for L, denoted 〈A, L〉,  
if A is a set of rules in ∆ such that:

1) There exists a defeasible derivation of L
from Π ∪ A; and

2) The set Π ∪ A is non contradictory;  and

3) There is no proper subset A′ of A such that A′

satisfies 1) and 2), that is, A is minimal as the 
defeasible part of the derivation mentioned in 1).
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Defeasible Argumentation

That is to say, an argument 〈A, L〉, or an 
argument A for L, is a minimal, 
noncontradictory set that could be obtained 
from a defeasible derivation of L. 

Stricts rules are not part of the argument.

Note that for any L which is derivable from Π
alone, the empty set ∅ is an argument for L
(i.e. 〈∅, L〉).

In this case, there is no other argument for L.

poor_perf(john).  sick(john).
good_perf(peter). unruly(peter).
suspend(X ) ∼responsible(X ).
suspend(X) unruly(X).
∼suspend(X ) responsible(X).
∼responsible(X ) poor_perf(X ).
responsible(X ) good_perf(X ).
responsible(X ) poor_perf(X ), sick(X ).

〈{∼suspend(john) responsible(john).,
responsible(john) poor_perf(john), sick(john).}, ∼suspend(john)〉

∼suspend(john)

responsible(john)      

poor_perf(john)

sick(john)

sick(john)

poor_perf(john)An argument for
∼suspend(john)
built from the program above

poor_perf(john).  sick(john).
good_perf(peter). unruly(peter)
suspend(X ) ∼responsible(X ).
suspend(X) unruly(X).
∼suspend(X ) responsible(X).
∼responsible(X ) poor_perf(X ).
responsible(X ) good_perf(X ).
responsible(X ) poor_perf(X ), sick(X ).

〈{suspend(peter) ∼responsible(peter).,
responsible(peter) poor_perf(peter).}, suspend(peter)〉

suspend(peter)

∼responsible(peter)      

poor_perf(peter)

poor_perf(peter )An argument for
suspend(peter)
built from the program above
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∼suspend(john)

responsible(john )      

poor_perf(john )

sick(john )

sick(john )

poor_perf(john )

〈S, Q〉 is a subargument of 〈A, L〉 if S is an argument for Q and S ⊆ A

S = {responsible(john ) poor_perf(john ), sick(john ).}

A = {∼suspend(john ) responsible(john).,
responsible(john ) poor_perf(john ), sick(john ).}

Rebuttal and Defeat

G.R.Simari, ICLP 2004 27

Rebuttals or Counter-Arguments

In DeLP, answers are supported by arguments but 
an argument could be defeated by other arguments.

Informally, a query L will succeed if the supporting 
argument for it is not defeated.

In order to study this situation, rebuttals or counter-
arguments are considered.

Counter-arguments are also arguments, and 
therefore this analysis must be extended to those 
arguments, and so on.

This analysis is dialectical in nature.

G.R.Simari, ICLP 2004 28

Rebuttals or Counter-Arguments
Def: Let P = (Π, ∆) be a program. We will say that two literals 

L1 and L2 disagree if the set Π ∪ {L1, L2 } is contradictory. 

For example, given  Π = { ∼L1 ← L2, L1 ← L3 } the set     
{ L2, L3 } is contradictory.

Def: Let P = (Π, ∆) be a program. We say that 〈A1, L1〉
counter-argues, rebuts or attacks 〈A2, L2〉 at literal L, if and 
only if there exists a sub-argument 〈A, L〉 of 〈A2, L2〉 such 
that L and L1 disagree.

A2

L2

A1

L1

L

A



Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 8

G.R.Simari, ICLP 2004 29

Rebuttals or Counter-Arguments
Given P = (Π, ∆), any literal P such that  Π P, has the 
support of the empty argument 〈∅, P〉.

Clearly, there is no posible counter-argument for any of 
those P since there is no way of constructing an argument 
which would mention a literal in disagreement with P.
On the other hand, any argument 〈∅, P〉 cannot be a 
counter-argument for any argument 〈A, L〉 because of  
the same reasons.
It is interesting to note that given an argument 〈A, L 〉, that 
argument could contain multiple points where it could be 
attacked.
Also, it would be very useful to have some preference 
criteria to decide between arguments in conflict.

∼risky(acme)

in_fusion(acme,estron) strong(estron)

in_fusion(acme,estron) strong(estron)

∼buy_shares(acme)

good_price(acme) risky(acme)

good_price(acme) in_fusion(acme,estron)

in_fusion(acme,estron)

Π ∪ { risky(acme), ∼risky(acme) }
is a contradictory set

Counter-argument

Π ∪ {suspend(john) ∼suspend(john)}

∼suspend(john)

responsible(john)       

poor_perf(john)

sick(john)

sick(john)

poor_perf(john)

poor_perf(john). sick(john).
good_perf(peter). unruly(peter)
suspend(X ) ∼responsible(X ).
suspend(X) unruly(X).
suspend(X ) ∼responsible(X ).
∼suspend(X ) responsible(X).
∼responsible(X ) poor_perf(X ).
responsible(X ) good_perf(X ).
responsible(X ) poor_perf(X ), sick(X ).

responsible(john)       

poor_perf(john)

sick(john)

sick(john)

poor_perf(john)

Π ∪ {responsible(john), ∼responsible(john)} suspend(john)

∼responsible(john)   

poor_perf(john)

poor_perf(john)
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An argument 〈B, P〉 is a proper defeater for 〈A, L〉 if 〈B, P〉
is a counter-argument of 〈A, L〉 that attacks a subargument     
〈S, Q〉 of 〈A, L〉 and 〈B, P〉 is better than 〈S, Q〉 (by the 
chosen comparison criterion).

Defeaters

responsible(john)       

poor_perf(john)

sick(john)

sick(john)

poor_perf(john)

suspend(john)

∼responsible(john)   

poor_perf(john)

poor_perf(john)

Proper Defeater
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An argument 〈B, P〉 is a proper defeater for 〈A, L〉 if 〈B, P〉 is 
a counter-argument of 〈A, L〉 that attacks a subargument       
〈S, Q〉 de 〈A, L〉 and 〈B, P〉 is not comparable to 〈S, Q〉
(by the chosen comparison criterion)

Defeaters

suspend(peter)

unruly(peter)

unruly(peter)

∼suspend(peter)

responsible(peter)   

good_perf(peter)

good_perf(peter)

Blocking Defeater
G.R.Simari, ICLP 2004 34

Argument Comparison: Generalized Specificity

Def: Let P = (Π, ∆) be a program. Let ΠG be the set of strict 
rules in Π and let F be the set of all literals that can be 
defeasibly derived from P.  Let 〈A1, L1〉 and 〈A2, L2〉 be 
two arguments built from P, where L1, L2 ∈ F.             
Then 〈A1, L1〉 is strictly more specific than 〈A2, L2〉 if:

1. For all H ⊆ F, if there exists a defeasible derivation
ΠG ∪ H ∪ A1 L1 while ΠG ∪ H L1 then
ΠG ∪ H ∪ A1 L2, and

2. There exists H′⊆ F  such that there exists a defeasible 
derivation ΠG ∪ H′ ∪ A2 L2 and ΠG ∪ H′ L2

but ΠG ∪ H′ ∪ A1 L1

(Poole, David L. (1985). On the Comparison of Theories: Preferring the Most Specific Explanation. 
pages 144—147 Proceedings of  9th IJCAI.)
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Argument Comparison: Generalized Specificity

Intuitively, this criteria prefers arguments with greater 
informational content (i.e. more precise) and with less use of 
rules (i.e. more concise).
For example, from program: 
bird(X) ← chicken(X) chicken(tina) 
flies(X) bird(X) scared(tina)
∼flies(X) chicken(X)
flies(X) chicken(X), scared(X)
It is possible to obtain 
〈A1, ∼flies(tina)〉 with A1 = {∼flies(tina) chicken(tina) }
〈A2, flies(tina)〉 with A2 = { files(tina) bird(tina) }
〈A3, flies(tina)〉 with A3 = { flies(tina) chicken(tina), scared(tina) }
A3 is preferred to A1 because it is more precise more information).
A1 is preferred to A2 because it is more concise (direct). 

G.R.Simari, ICLP 2004 36

Argument Comparison: Rule’s Priorities

Def: Let P = (Π, ∆) be a program, and let “>” be a 
partial order defined on the defeasible rules in ∆.              
Let 〈A1, L1〉 and 〈A2, L2〉 be two arguments obtained 
from P. We will say that 〈A1, L1〉 is preferred to       
〈A2, L2〉 if the following conditions are verified:

1. If there exists at least a rule ra∈A1 and a rule     
rb∈A2 such that ra > rb; and

2. There is no pair of rules r′a∈A1 and r′b∈A2          
such that r′b > r a



Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 10

G.R.Simari, ICLP 2004 37

Argument Comparison: Rule’s Priorities
From the program:

buy_shares(X) good_price(X) good_price(acme) 
∼buy_shares(X) risky(X) in_fusion(acme, estron) 
risky(X) in_fusion(X, Y)

with rule preference:
∼buy_shares(X) risky(X) >  buy_shares(X) good_price(X) 

argument 〈A, ∼buy_shares(acme)〉 where
A = {∼buy_shares(acme) risky(acme),

risky(acme) in_fusion(acme, estron)} 

will be preferred to argument
〈B, buy_shares(acme)〉 where
B = {buy_shares(acme) good_price(acme) }

G.R.Simari, ICLP 2004 38

An argument 〈B, P〉 is a defeater for 〈A, L〉 if 〈B, P〉 is a 
counter-argument for 〈A, L〉 that attacks a subargument 〈S, Q〉
de 〈A, L〉 and one of the following conditions holds:

(a) 〈B, P〉 is better than 〈S, Q〉 (proper defeater), or 

(b) 〈B, P〉 is not comparable to 〈S, Q〉 (blocking defeater)

A

L

B

P

Q

S

Defeaters
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Defeaters: Example
From the program:

buy_shares(X) good_price(X) good_price(acme) 
∼buy_shares(X) risky(X) in_fusion(acme, estron) 
risky(X) in_fusion(X, Y)

With preference:
∼buy_shares(X) risky(X) > buy_shares(X) good_price(X) 

The argument 〈A, ∼buy_shares(acme)〉 where
A = {∼buy_shares(acme) risky(acme),

risky(acme) in_fusion(acme, estron)}
is counter-argument of
〈B, buy_shares(acme)〉

where B = { buy_shares(acme) good_price(acme) }
that is a proper defeater of it.

G.R.Simari, ICLP 2004 40

Defeaters: Example
From the program:

pacifist(X) quaker(X) 

∼pacifist(X) republican(X)

quaker(nixon) 

republican(nixon)

With the preference defined by specificity:
〈A, ∼pacifist(nixon) 〉 where

A = {∼pacifist(nixon) republican(nixon) } 

it is a blocking defeater for
〈 B, pacifist(nixon) 〉

where B = { pacifist(nixon) quaker(nixon) }
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Argumentation Lines

G.R.Simari, ICLP 2004 42

Given P = (Π, ∆), and 〈A0, L0〉 an argument obtained from P. An 
argumentation line for 〈A0, L0〉 is a sequence of arguments obtained 
from P, denoted Λ = [〈A0, L0〉, 〈A1, L1〉, …] where each element in 
the sequence 〈Ai, Li〉, i > 0 is a defeater for 〈Ai-1, Li-1〉.

A0

L0

A1

L1

Argumentation Line

A2

L2

A3

L3

A4

L4

43

Given an argumentation line Λ = [〈A0, L0〉, 〈A1, L1〉, …], the 
subsequence ΛS = [〈A0, L0〉, 〈A2, L2〉, …] contains supporting 
arguments and ΛI = [〈A1, L1〉, 〈A3, L3〉, …] are interfering 
arguments.

Argumentation Line

A0

L0

A1

L1

A2

L2

A3

L3

A4

L4

ΛS

44

Argumentation Line

A0

L0

A1

L1

A2

L2

A3

L3

A4

L4

ΛI

Given an argumentation line Λ = [〈A0, L0〉, 〈A1, L1〉, …], the 
subsequence ΛS = [〈A0, L0〉, 〈A2, L2〉, …] contains supporting 
arguments and ΛI = [〈A1, L1〉, 〈A3, L3〉, …] are interfering 
arguments.
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Let’s consider a program P where:
〈A1, L1〉 defeats  〈A0, L0〉
〈A2, L2〉 defeats  〈A0, L0〉
〈A3, L3〉 defeats  〈A1, L1〉
〈A4, L5〉 defeats  〈A2, L2〉
〈A5, L5〉 defeats  〈A2, L2〉

Then, from 〈A0, L0〉 there exist several argumentation 
lines such as:

Λ1 = [〈A0, L0〉, 〈A1, L1〉, 〈A3, L3〉]

Λ2 = [〈A0, L0〉, 〈A2, L2〉, 〈A4, L4〉]

Λ3 = [〈A0, L0〉, 〈A2, L2〉, 〈A5, L5〉]

Argumentation Lines

G.R.Simari, ICLP 2004 46

Argumentation Lines: Problems
There are several undesired situations that could appear in 
argumentation lines.

Let’s see an example:
{ (d ∼b, c), (b ∼d, a), (∼b a), (∼d c), (a), (c) } 

〈 A1, b 〉 = 〈 { (b ∼d, a), (∼d c) }, b 〉 is a proper defeater of

〈 A2, d 〉 = 〈 { (d ∼b, c), (∼b a) }, d 〉 and reciprocally.

Note 〈A1, b〉 is strictly more specific than the sub-argument                  
〈B, ∼b 〉 = 〈 { (∼b a) }, ∼b 〉 of A2 and 〈A2, d 〉 is strictly more specific 
than the sub-argument 〈 C, ∼d 〉 = 〈 { (∼d c) }, ∼d 〉 of A1.

A1

b

A2

d
∼b

B
∼d

C

This will not be allowed since only 
defeaters could be introduced.
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The figure below shows another possible problem, this 
leading to an infinite argumentation line. 
In this case, the same argument is introduced again in the 
same role that was introduced before (supporting).
The obvious solution is not to allow that.

A

∼r

B

∼p

p

W

Argumentation Lines: Problems

C

∼q

q

X

D

∼s

s

Y

A

∼r

r

Z
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Nevertheless, in a more subtle way, it is possible to introduce 
a sub-argument of an argument that is already introduced.
When 〈W, p〉 is introduced, that action allows to reintroduce 
〈B, ∼p〉 and that leads to circular argumentation.

The problem came from the introduction of argument 〈W, p〉.

A

∼r

B

∼p

p

W

Argumentation Lines: Problems

C

∼q

q

X

D

∼s

s

Y

∼p

Z

p

W
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In the picture below, the argumentation line shows the 
problem created by reintroducing an argument.
This argument started as a supporting argument and it is 
reintroduced as an interference argument.
The problem appears when argument 〈C, ∼q〉 is introduced 
as a supporting argument, but it contains a counter-
argument for the original argument.

B

∼p

A

∼r

p

X

Argumentation Lines: Problems

C

∼q

q

Y

r

Z

A

∼r

Flipping sides G.R.Simari, ICLP 2004 50

Argumentation Lines: Problems
This leads to the notion of concordance in a line.
Given a program P = (Π, ∆), we will say that 〈A1, L1〉 is 
concordant with 〈A2, L2〉 if and only if Π ∪ A1 ∪ A2 is non 
contradictory.
In general, a set of arguments { 〈Ai, Li〉, i=1,…,n } is said 
to be concordant if:

Π ∪ ∪
n

i=1 Ai

is non-contradictory.

We will require that in an argumentation line the set of 
supporting arguments be concordant and the set of 
interfering arguments be concordant.
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Argumentation Lines: Problems
Let’s see another problem through the following example:

dangerous(X) tiger(X) tiger(hobbes) 

∼dangerous(X) baby(X)  baby(hobbes) 

∼dangerous(X) pet(X)  pet(hobbes)

with preference defined by specificity:
〈A1, ∼dangerous(hobbes) 〉 where A1 = { ∼dangerous(hobbes) baby(hobbes) } 

will be blocked by
〈A2, dangerous(hobbes) 〉 where A2 = {dangerous(hobbes) tiger(hobbes) } 

which in turn will be blocked by
〈A3, ∼dangerous(hobbes) 〉 where  A3 = { ∼dangerous(hobbes) pet(hobbes)}

the line  [ A1, A2, A3 ] could be obtained but that will be incorrect since A2 was 
already blocked by A1 and that would represent the policy that having two 
arguments blocking a third is better than using only one argument to do that.
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Acceptable Argumentation Line
Given a program P = (Π, ∆), an argumentation line 

Λ = [〈A0, L0〉, 〈A1, L1〉, …] will be acceptable if:

1. Λ is a finite sequence (no circularity).

2. The set ΛS, of supporting arguments is concordant, and 
the set ΛI, of interfering arguments is concordant.

3. There is no argument 〈Ak, Lk〉 in Λ that is a 
subargument of a preceeding argument 〈Ai, Li〉, i < k.

4. For all i, such that 〈Ai, Li〉 is a blocking defeater for    
〈Ai-1, Li-1〉, if there exists 〈Ai+1, Li+1〉 then 〈Ai+1, Li+1〉 is 
a proper defeater for 〈A, Li〉 (i.e., 〈A, Li〉 could not be 
blocked).
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Argumentation Lines

A0

A1

A2

A3

A4
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Argumentation Lines
A0

A1

B2

B3 Λ2

A0

A1

A2

A3

A4 Λ1

A0

A1

B2

C3

C4

C5 Λ3

A0

D1

D2 Λ4
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Argumentation Lines
A0

A1

B2

B3 Λ2

A2

A3

A4 Λ1

A0

A1

B2

C3

C4

C5 Λ3

A0

D1

D2 Λ4
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Argumentation Lines
A0

A1

B2

B3 Λ2

A2

A3

A4 Λ1

C3

C4

C5 Λ3

A0

D1

D2 Λ4
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Argumentation Lines
A0

A1

B2

B3 Λ2

A2

A3

A4 Λ1

C3

C4

C5 Λ3

D1

D2 Λ4

Dialectical Tree
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Dialectical Tree

A Dialectical Tree is the conjoint representation of all 
the acceptable argumentation lines. 

Given an argument A for a literal L, the dialectical tree 
contains all acceptable argumentation lines that start 
with that argument.

In that manner, the analysis of the defeat status for a 
given argument could be carried out on the dialectical 
tree. 

As every argumentation line is admisible, and 
therefore finite, every dialectical tree is also finite.
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Dialectical Tree
Def: Let 〈A0, L0〉 be an argument built from a program P = (Π, ∆). 

A dialectical tree for 〈A0, L0〉, denoted T 〈A0, L0〉
is defined as 

follows:
1. The root of the tree is labeled 〈A0, L0〉

2. Let N be non-root node of the tree labeled 〈An, Ln〉, and

Λ= [ 〈A0, L0〉, 〈A1, L1〉, …, 〈An, Ln〉 ] the sequence of labels of 
the path from the root to N. Let 〈B1, Q1〉, 〈B2, Q2〉, …, 〈Bk, Qk〉
be all the defeaters for 〈An, Ln〉.

For each defeater 〈Bi, Qi〉 (1≤ i ≤ k), such that the 
argumentation line Λ′=[〈A0, L0〉, 〈A1, L1〉, …, 〈An, Ln〉, 〈Bi, Qi〉]
is acceptable, then the node N has a child Ni labeled  〈Bi, Qi〉.

If there is no defeater for 〈An, Ln〉 or there is no 〈Bi, Qi〉 such 
that Λ′ is acceptable, then N is a leaf.
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Marking of a Dialectical Tree

Internal nodes of T〈A, L〉

D

U

D D D

D

U DU U U

Leaves of          
T〈A, L〉

D
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Marking of a Dialectical Tree
Marking Procedure: Let T 〈A, L〉 be a dialectical tree for

〈A, L〉. The corresponding marked dialectical tree,        
T *〈A, L〉, will be obtained marking every node in             
T 〈A, L〉 as follows:

1. All leaves in T 〈A, L〉 are marked as U’s in T *〈A, L〉.

2. Let 〈B, Q〉 be an inner node of T 〈A, L〉. Then 〈B, Q〉
will be marked as U in T *〈A, L〉 if and only if every 
child of 〈B, Q〉 is marked as D and the node 〈B, Q〉
will be marked as D if and only if it has at least a 
child marked as U. 
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Dialectical Tree
A

Marking
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Dialectical Tree
A

U

U

U

U

Marking

G.R.Simari, ICLP 2004 64

Dialectical Tree
A

UD

U D

U

D

U

Marking
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Dialectical Tree
A

U

U

D

U

U

D

U

D

U

Marking
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Dialectical Tree
A

D

U

U

D

U

U

D

U

D

U

Marking
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Dialectical Tree
A

D

D

U

U

D

U

U

D

U

D

U

Marking
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Dialectical Tree
A

D

D

U

U

D

U

U

D

U

D

U

Marking

U
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Warranted Literals

Let P = (Π, ∆) be a defeasible program. 
Let 〈A, L〉 be an argument and let T *〈A, L〉 be its 
associated dialectical tree.  
A literal L is warranted if and only if the root of         
T *〈A, L〉 is marked as “U”. 

That is, the argument 〈A, L〉 is an argument such 
that each possible defeater for it has been defeated.

We will say that A is a warrant for L. 
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Dialectical Tree: Pruning
A

U

U

U

U

Pruning

G.R.Simari, ICLP 2004 71

Dialectical : Pruning Tree
A

D

U

U

U

U

Pruning

G.R.Simari, ICLP 2004 72

Answers in DeLP
If the strict part Π of a program P = (Π, ∆) is 
inconsistent, any literal can be derived.

When it is possible to defeasible derive a pair of 
complementary literals { L, ∼L } it is possible to 
introduce a way to try to decide whether to accept one 
of them.

Therefore, there are three different possible answers: 
accept L, accept ∼L, or to reject both.

Also, if the program is used as a device to resolve 
queries, a fourth possibility appears: the literal for which 
the query is made is unknown to the program.
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Answers in DeLP
Given a program P = (Π, ∆), and a query for L the 

posible answers are:

• YES, if L is warranted.

• NO, if ∼L is warranted.

• UNDECIDED, if neither L nor ∼L are warranted.

• UNKNOWN, if L is not in the language of the 
program.

G.R.Simari, ICLP 2004 74

Specification of the Warrant Procedure

warrant(Q, A) :- % Q is a warranted literal
find_argument(Q, A), % if A is an argument for Q
\+ defeated(A, [support(A, Q)]). % and A is not defeated

defeated(A, ArgLine) :- % A is defeated
find_defeater(A, D, ArgLine), % if there is a defeater D for A
acceptable(D, ArgLine, NewLine), % acceptable within the line
\+ defeated(D, NewLine).         % and D is not defeated

find_defeater(A, D) :- % C is a defeater for A
find_counterarg(A, D, SubA), % if C counterargues A in SubA
\+ better(SubA, D). % and SubA is not better than C

Extensions and 
Applications

G.R.Simari, ICLP 2004 76

Adding not

DeLP program rules can contain not as in
∼cross_railway_tracks not ∼train_is_coming
∼cross_railway_tracks cannot_wait,

not ∼train_is_coming

Is very simple to extend the notions of defeasible 
derivation, argument and counter-argument.

If not L is a literal used in the body of a rule, there is 
a new kind of attack on it, i.e. if we have an 
undefeated  argument for L then the argument that 
contains a rule with not L will be defeated.
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Work in Progress

Extending generalized specificity allowing utility values 
for facts and rules, giving the possibility of introducing 
pragmatic considerations.

Decision-Theoretic Defeasible Logic Programming will 
be represented as P = (Π, ∆, Φ, B), where Π and ∆
are as before, B is a Boolean algebra with top and 
bottom ⊥, and Φ is defined Φ: Π ∪ ∆ → B.

Paper in the 2004 Non Monotonic Reasoning Conf. 
http://www.pims.math.ca/science/2004/NMR/add.html
or http://cs.uns.edu.ar/∼grs

78

Work in Progress
We just got the second place in the Robocup e-league using 
Prolog (see http://cs.uns.edu.ar/~gis/robocup-TDP.htm.)     
Now we are extending DeLP in a way of controlling the robots, 

An action A will be an ordered triple 〈X, P, C〉, where X is a 
consistent set of literals representing consequences of executing 
A, P is a set of literals representing preconditions for A, C is a 
set of constrains of the form not L, where L is a literal.

Actions will be denoted:

{X1, …, Xn } ←⎯ {P1, …, Pm }, not {C1, …, Ck }

where not {C1, …, Ck } means {not C1, …, not Ck }
and not Ci  means Ci is not warranted.

{water_garden(today) } ←⎯⎯⎯ {∼rain(today)}, not {rain(X)}
See http://www.pims.math.ca/science/2004/NMR/ac.html
or http://cs.uns.edu.ar/∼grs

A

watergarden
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Work in Progress
Implementation issues considering world dynamics.

The set of agent’s beliefs is formed by the warranted 
literals, i.e., those literals that are supported by an 
undefeated argument.

As an agent receive new perceptions, beliefs could change.

Because the process of calculating the new warrants is 
computationally hard we have developed a system to 
integrate precompiled knowledge in DeLP to address real 
time constrains for belief change. Our goal is to avoid re-
computing arguments. 

See http://web.dis.unimelb.edu.au/pgrad/iyadr/argmas/ or 
http://cs.uns.edu.ar/∼grs

Work in Progress

Argument-Based RS Architecture
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Work in Progress
C1-

C2+

C3+

en1
?

en2
?

Fuzzy 
ART 

Neural 
Network

e1
+

e2
-

ek
+
.....

en1 is +
en2 is ...?New facts 

User-specified 
rules

Defeasible 
Logic 
Program  
(DeLP)

DeLP Interpreter
?- is(en2,pos).

?- is(en2, neg).
FLAIRS 2004 http://fermat.eps.udl.es/~cic/

Belief Revision and 
Defeasible Reasoning

G.R.Simari, ICLP 2004 83

Belief Revision

What is the motivation of belief revision?

To model the Dynamics of Knowledge

How can we do that?

Classical Logic

+ Selection Mechanism

Non-classical Logic

G.R.Simari, ICLP 2004 84

An Example
From the following beliefs

The bird caught in the trap is a swan
The bird caught in the trap comes from Sweden
Sweden is part of Europe
All European swans are white

It can be inferred that 
The bird caught in the trap is white

Now, new information arrives:
The bird caught in the trap is black

What it should be thrown away?
(Example due Peter Gärdenfors and Hans Rott, Belief Revision. 

Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 4,1995)



Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 22

G.R.Simari, ICLP 2004 85

Epistemic Models

Belief Sets:
Sets of sentences closed under 
logical consequence.

Belief Bases:
Arbitrary sets of sentences.

G.R.Simari, ICLP 2004 86

Epistemic Attitudes
Let K be a consistent belief base and let α be 
a sentence.

α is accepted when α∈Cn(K)

α is rejected when ∼α∈Cn(K)

α is indetermined when α∉Cn(K) and ∼α∉Cn(K)

If K is inconsistent then every sentence is 
accepted (and rejected).

G.R.Simari, ICLP 2004 87

Operations
Expansion (+):  Allows to transform indetermined senteces in 

accepted or rejected:
a) If is α indetermined in K then α is accepted in K+α

b) If is α indetermined in K then α is rejected in K+∼α

Contraction (,): Allows to transform accepted or rejected
sentences in indeterminded:
a) If is α accepted in K then α is indetermined in K,α

b) If is α rejected in K then α is indetermined in K,∼α

Revision (∗): Allows to transform sentencias accepted in 
rejected and to transform rejected sentences in accepted:
a) If is α accepted in K then α is rejected in K∗∼α

b) If is α rejected in K then α is accepted in K∗α

G.R.Simari, ICLP 2004 88

Operations
Expansion (+): 

K+α = Cn(K ∪ { α }) (Belief Sets)

K+α = K ∪ { α } (Belief Bases)

Contraction (,)

Revision (∗)
How can they be defined?

Two possibilities have been introduced:

Levi Identity: K∗α = (K,∼α)+α

Harper Identity: K,α = K ∩ K∗∼α
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Contraction Postulates
Let K be a Belief Set.

Closure: K,α is a belief set.

Inclusion: K,α ⊆ K

Vacuity: if α ∉ K then, K,α = K

Success: if  α then α ∉ K,α

Recovery: if α ∈ K then, K ⊆ (K,α)+α

Equivalence: if α↔β, then K,α = K,β

G.R.Simari, ICLP 2004 90

Change Operators

Construction: 
An Algorithm

Postulates: 
Properties
satisfied?

91

Partial Meet Contraction
Construction:

K⊥α={H: H⊆K, α∉Cn(H) and for all H⊂H′⊆K then α∈Cn(H′)}

K,α = ∩γ(K⊥α)

Example:
K = { a, b, a ∧ b → c, d }

K⊥c = {K1, K2, K3} = {{ a, b, d }, { a, a∧b → c,d }, { b, a∧b → c,d }}

Some possible results of K,c:

{ a, b, d }        γ(K⊥c) = { K1 }

{ a, d }    γ(K⊥c) = { K1, K2 }

{ a ∧ b → c, d } γ(K⊥c) = { K2, K3 }

{ d } γ(K⊥c) = { K1, K2, K3 }

Selection Function

γ(K⊥α) ⊆ K⊥α

if K⊥α≠∅, then γ(K⊥α)≠∅
otherwise γ(K⊥α)= K

G.R.Simari, ICLP 2004 92

Kernel Contraction

Kernel mode:
Let K be a set of sentences and α be a 
sentence.
We found all minimal subsets of K implying 
α (called α-kernels).
We “cut” the α-kernels by means of an 
incision function σ and then we eliminate the 
cut set from K.
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Example:
K = { a, a → c, b, b → c, d, ∼e }

K+ c ={{ a, a → c }, { b, b → c }}

Some possible results of K−c:

 { a → c, b → c, d, ∼e } σ(K+ c) = { a, b }

 { a, b → c, d, ∼e } σ(K+ c) = { a → c, b }

 { b → c, d, ∼e } σ(K+ c) = { a, a → c, b }

 { d, ∼e } σ(K+ c) = { a, a → c, b, b → c }

Kernel Contraction
Construction:

K + α = {H: H⊆K, α∈Cn(H) and for all H′⊂H then α∉Cn(H′)}
K,α = K \σ(K+ α)

Incision Function

σ(K+α)⊆∪ K+α

if x ∈ K + α and x ≠∅, then     
x ∩σ(K+α) ≠∅
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Controversial Postulates
Every construction of a change operator is 
charaterized by postulates.

In the AGM model, there are some controversial 
postulates.

Contraction:

Recovery: K ⊆ (K,α)+α

Revision:

Success: α∈K∗α

Consistency: If α is consistent then K∗α is 
consistent.

Explanations, Belief 
Revision and 

Defeasible Reasoning

G.R.Simari, ICLP 2004 96

Belief Bases

There are two kinds of beliefs:

Explicit Beliefs: all the sentences in the belief 
base.

Implicit Beliefs: all sentences derived from the 
belief base.

The implicit beliefs are “explained”
from more basic beliefs.
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Explanations
An explanans justifies an explanandum.

Set of sentences A sentence

Notation: A α

Properties:
Deduction: A α
Consistency: It is not the case that A ⊥
Minimality: There is no set A′⊂ A such that A′ α
Informational Content: It is not the case that  α A
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Informational Content

It is not the case that  α A

This postulate precludes the following cases:

Self-explanation:

{ α } α

Redundancy:

{ α ∨ β, α ∨ ∼β } α

G.R.Simari, ICLP 2004 99

New change operators

We will define operators for revision with respect 
to an explanans (i.e., a set of sentences).

The idea is the following: 

Instead of incorporating a sentence α we 
request an explanans A for α.

We add A to K

Then, we restore consistency 
(Consolidation).

G.R.Simari, ICLP 2004 100

New change operators

A Explanans for α
K

(K ∪A),⊥

K∪A
Possibly

inconsistent
state

α might not be accepted
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Two kinds of Constructions

Partial Meet Revision by a set of sentences:

K A = (K∪A),⊥
Partial Meet Contraction Operator

Kernel Revision by a set of sentences:

K A = (K∪A),⊥
Kernel Contraction Operator

G.R.Simari, ICLP 2004 102

Different kinds of beliefs
Particular Beliefs:

car(ferrari)        bird(opus)

General Beliefs: 

∀x(car(x)→vehicle(x))     ∀x(bird(x)→flies(x))

The strategy: all beliefs removed in a change 
process are preserved in a different status.
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Transformation of Beliefs

Transf ( (∀x)(p(x)→q(x)) )

p(x) q(x) p(x) : q(x)
q(x)

or

Defeasible rule in
Argumentative Systems

Default rule in
Default Theories

G.R.Simari, ICLP 2004 104

Epistemic Model

A knowledge structure [K, ∆] where:

K is the undefeasible knowledge.

∆ is the defeasible knowledge represented by:

Defeasible conditionals in Argumentative 
Systems; or

Default rules in Default Theories.
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Changes

[K, ∆] A = [K′,∆′]
where:

K′ = K A

∆′ = ∆ ∪ { Transf(α): α ∈K \K A }

G.R.Simari, ICLP 2004 106

Example

K = { bird(tweety), bird(opus),

∀x(peng(x)→bird(x)), ∀x(bird(x)→fly(x))}

From K we may conclude that:

bird(tweety), bird(opus), fly(tweety), fly(opus)

Then, we receive the next explanans A for ∼fly(opus):

{ bird(opus), peng(opus), 

∀x(peng(x)∧bird(x)→∼fly(x) }
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Example
In order to obtain K A we need to eliminate 
contradictions from K ∪A.

K ∪A = { bird(tweety), bird(opus), peng(opus),

∀x(peng(x)→bird(x)), ∀x(bird(x)→fly(x)),

∀x(peng(x)∧bird(x)→∼fly(x)}}

We could give up particular or general beliefs.

If we discard general beliefs, we could select the     
less specific beliefs, for instance, ∀x(bird(x)→fly(x)).
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Example
Then, we have the following belief base:
K A = { bird(tweety), bird(opus), ∀x(peng(x)→bird(x)),

peng(opus),∀x(peng(x)∧bird(x)→∼fly(x)) }

From K A me may conclude that:
bird(tweety), bird(opus), peng(opus), ∼fly(opus)

We can’t conclude fly(tweety) even though it is consistent 
with K.

This problem can be solved if we preserve  the 
defeasible conditional bird(x) fly(x) or the default rule
bird(x) : fly(x) / fly(x). 
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Example

That is, we have the following knowledge:

K A = { bird(tweety), bird(opus), peng(opus),
∀x(peng(x) ∧ bird(x)→∼fly(x))}

∆ = { bird(x) fly(x) }

From [K A , ∆] we can infer that:

bird(tweety), bird(opus), peng(opus),
∼fly(opus), fly(tweety)

We have a new epistemic model and a new set of  
epistemic attitudes.
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