
Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 1

Defeasible Logic
Programming and
Belief Revision
A Tutorial for the 20th ICLP

Guillermo R. Simari
Artificial Intelligence Research and Development Lab.
Dept. of Computer Science and Engineering

UNIVERSIDAD NACIONAL DEL SUR

ARGENTINA
http://cs.uns.edu.ar/~grs

G.R.Simari, ICLP 2004 2

Agenda

Introduction

Defeasible Logic Programming

Brief Introduction to Belief Revision

Explanations, Belief Revision and
Defeasible Reasoning

Brief List of References

G.R.Simari, ICLP 2004 3

Research in Logic Programming, Nonmonotonic
Reasoning, and Argumentation has obtained
important results, providing powerful tools for
knowledge representation and Common Sense
reasoning.

We will introduce Defeasible Logic
Programming (DeLP), a formalism that
combines results of Logic Programming and
Defeasible Argumentation.

Introduction

DeLP

Intelligent
Agents

Multi-Agent
Systems

Logic
Programming Argumentation

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 2

G.R.Simari, ICLP 2004 5

DeLP adds the possibility of representing
information in the form of weak rules in a
declarative manner and a defeasible
argumentation inference mechanism for
warranting the conclusions that are entailed.

Weak rules represent a key element for
introducing defeasibiliy and they are used to
represent a defeasible relationship between
pieces of knowledge.

This connection could be defeated after all
things are considered.

Introduction

G.R.Simari, ICLP 2004 6

General Common Sense reasoning should
be defeasible in a way that is not explicitly
programmed.

Rejection should be the result of the global
consideration of the corpus of knowledge
that the agent performing such reasoning
has at his disposal.

Defeasible Argumentation provides a way of
doing that.

Introduction

Defeasible Logic
Programming

G.R.Simari, ICLP 2004 8

DeLP considers two kinds of program rules:
defeasible rules to represent tentative information
such as

∼flies(dumbo) elephant(dumbo)

and strict rules used to represent strict knowledge
such as

mammal(idéfix) ← dog(idéfix)
Syntactically, the symbol “ ” is all that
distinguishes a defeasible rule from a strict one.
Pragmatically, a defeasible rule is used to
represent knowledge that could be used when
nothing can be posed against it.

DeLP’s Language

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 3

G.R.Simari, ICLP 2004 9

Facts and Strict Rules
A Fact is a ground literal: innocent(joe)
A Strict Rule is denoted:

L0 ← L1, L2 , …, Ln

where L0 is a ground literal called the Head of the rule
and L1, L2, …, Ln are ground literals which form its
Body.
This kind of rule is used to represent a relation
between the head and the body which is not
defeasible.
Examples:

∼guilty(joe) ← innocent(joe)
mammal(garfield) ← cat(garfield)

G.R.Simari, ICLP 2004 10

Defeasible Rules
A Defeasible Rule is denoted:

L0 L1, L2, …, Ln

where L0 is a ground literal called the Head of the rule and
L1, L2, …, Ln are ground literals which form its Body.
This kind of rule is used to represent a relation between the
head and the body of the rule which is tentative and its
intuitive interpretation is:
“Reasons to believe in L1, L2, …, Ln are reasons to

believe in L0”
Examples:

flies(tweety) bird(tweety)
∼good_weather(today) low_pressure(today), wind(south)

G.R.Simari, ICLP 2004 11

Defeasible Rules
Defeasible rules are not default rules.

In a default rule such as ϕ : ψ1, ψ2, …, ψn / χ the
justification part, ψ1, ψ2, …, ψn, is a consistency check that
contributes in the control of the applicability of this rule.

The effect of a defeasible rule comes from a dialectical
analysis made by the inference mechanism.

Therefore, in a defeasible rule there is no need to encode
any particular check, even though could be done if
necessary.

Change in the knowledge represented using DeLP’s
language is reflected with the sole addition of new
knowledge to the representation, thus leading to better
elaboration tolerance.

G.R.Simari, ICLP 2004 12

Defeasible Logic Program
A Defeasible Logic Program (delp) is a set of facts, strict
rules and defeasible rules denoted P = (Π, ∆) where

Π is a set of facts and strict rules, and
∆ is a set of defeasible rules.

Facts, strict, and defeasible rules are ground.
However, we will use “schematic rules” containing variables.
If R is a schematic rule, Ground(R) stands for the set of all
ground instances of R and

Ground(P) = ∪R∈P Ground(R)

in all cases the set of individual constants in the language of
P will be used (see V. Lifschitz, Foundations of Logic Programming, in
Principles of Knowledge Representation, G. Brewka, Ed., 1996, folli)

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 4

G.R.Simari, ICLP 2004 13

Defeasible Logic Programming: DeLP
Here is an example of a Defeasible Logic Program (delp)

denoted P = (Π, ∆)

bird(X) ← chicken(X) chicken(tina)
bird (X) ← penguin(X) penguin(opus)
∼flies(X) ← penguin(X) scared(tina)

flies(X) bird(X)
∼flies(X) chicken(X)
flies(X) chicken (X), scared(X)

Strict
Rules Facts

Defeasible
Rules

Π

∆

Ground(flies(X) bird(X)) = { flies(tina) bird(tina),
flies(opus) bird(opus) }

G.R.Simari, ICLP 2004 14

Defeasible Logic Programming: DeLP
Here is another example of a P = (Π, ∆)

has_a_gun(X) lives_in_chicago(X)
∼has_a_gun(X) lives_in_chicago(X),

pacifist(X)
pacifist(X) quaker(X)
∼pacifist(X) republican(X)

lives_in_chicago(nixon)
quaker(nixon)
republican(nixon)

Facts

Defeasible
Rules

Π

∆

Adapted from Prakken and Vreeswijk (2000)

G.R.Simari, ICLP 2004 15

Defeasible Logic Programming: DeLP
Another example of a P = (Π, ∆)

buy_shares(X) good_price(X)
∼buy_shares(X) good_price(X), risky(X)
risky(X) in_fusion(X, Y)
risky(X) in_debt(X)
∼risky(X) in_fusion(X, Y), strong(Y)

good_price(acme)
in_fusion(acme, estron)
strong(estron)

Facts

Defeasible
Rules

Π

∆

G.R.Simari, ICLP 2004 16

Defeasible Derivation
Def: Let P = (Π, ∆) be a delp and L a ground literal.

A defeasible derivation of L from P, denoted P L,
is a finite sequence of ground literals

L1, L2, ..., Ln = L,

such that each literal Lk in the sequence is there
because:

Lk is a fact in Π, or

there is a rule (strict or defeasible) in P with
head Lk and body B1, B2, ..., Bj, where every
literal Bj in the body is some Li appearing
previously in the sequence (i < k).

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 5

G.R.Simari, ICLP 2004 17

Defeasible Derivation

Notice that defeasible derivation differs from
standard logical or strict derivation only in the
use of defeasible, or weak, rules.

Given a Defeasible Logic Program, a derivation
for a literal L is called defeasible because there
may exist information in contradiction with L, or
the way that L is derived, that will prevent the
acceptance of L as a valid conclusion.

A few examples of defeasible derivation follow.

G.R.Simari, ICLP 2004 18

Defeasible Derivation
From the program:

bird(X) ← chicken(X) chicken(tina)
bird(X) ← penguin(X) penguin(opus)
∼flies(X) ← penguin(X) scared(tina)
flies(X) bird(X)
∼flies(X) chicken(X)
flies(X) chicken(X), scared(X)

The following derivations could be obtained:

chicken(tina), bird(tina), flies(tina)
chicken(tina), ∼flies(tina)
chicken(tina), scared(tina), flies(tina)
penguin(opus), bird(opus), flies(opus)
penguin(opus), ∼flies(opus)

G.R.Simari, ICLP 2004 19

From the program:
buy_shares(X) good_price(X)
∼buy_shares (X) good_price(X), risky(X)
risky(X) in_fusion(X, Y)
risky(X) in_debt(X)
∼risky(X) in_fusion(X, Y), strong(Y)
good_price(acme)
in_fusion(acme, estron)
strong(estron)

The following derivations could be obtained:
good_price(acme), buy_shares(acme)
in_fusion(acme, estron), risky(acme), good_price(acme),
∼buy_shares(acme)
in_fusion(acme, estron), risky(acme)
in_fusion(acme, estron), strong(estron), ∼risky(acme)

Defeasible Derivation

G.R.Simari, ICLP 2004 20

Programs and Derivations
A program P = (Π, ∆) is contradictory if it is possible to
derive from that program a pair of complementary literals.

Note that from the programs given as examples it is
possible to derive pairs of complementary literals, such
as flies(tina), ∼flies(tina) and flies(opus), ∼flies(opus)
from the first one, and risky(acme), ∼risky(acme) and
buy_shares(acme), ∼buy_shares(acme) from the second.

Contradictory programs are useful for representing
knowledge that is potentially contradictory.

On the other hand, as a design restriction, the set Π
should not be contradictory, because in that case the
represented knowledge would be inconsistent.

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 6

G.R.Simari, ICLP 2004 21

Defeasible Argumentation

Def: Let L be a literal and P = (Π, ∆) be a program.
We say that A is an argument for L, denoted 〈A, L〉,
if A is a set of rules in ∆ such that:

1) There exists a defeasible derivation of L
from Π ∪ A; and

2) The set Π ∪ A is non contradictory; and

3) There is no proper subset A′ of A such that A′

satisfies 1) and 2), that is, A is minimal as the
defeasible part of the derivation mentioned in 1).

G.R.Simari, ICLP 2004 22

Defeasible Argumentation

That is to say, an argument 〈A, L〉, or an
argument A for L, is a minimal,
noncontradictory set that could be obtained
from a defeasible derivation of L.

Stricts rules are not part of the argument.

Note that for any L which is derivable from Π
alone, the empty set ∅ is an argument for L
(i.e. 〈∅, L〉).

In this case, there is no other argument for L.

poor_perf(john). sick(john).
good_perf(peter). unruly(peter).
suspend(X) ∼responsible(X).
suspend(X) unruly(X).
∼suspend(X) responsible(X).
∼responsible(X) poor_perf(X).
responsible(X) good_perf(X).
responsible(X) poor_perf(X), sick(X).

〈{∼suspend(john) responsible(john).,
responsible(john) poor_perf(john), sick(john).}, ∼suspend(john)〉

∼suspend(john)

responsible(john)

poor_perf(john)

sick(john)

sick(john)

poor_perf(john)An argument for
∼suspend(john)
built from the program above

poor_perf(john). sick(john).
good_perf(peter). unruly(peter)
suspend(X) ∼responsible(X).
suspend(X) unruly(X).
∼suspend(X) responsible(X).
∼responsible(X) poor_perf(X).
responsible(X) good_perf(X).
responsible(X) poor_perf(X), sick(X).

〈{suspend(peter) ∼responsible(peter).,
responsible(peter) poor_perf(peter).}, suspend(peter)〉

suspend(peter)

∼responsible(peter)

poor_perf(peter)

poor_perf(peter)An argument for
suspend(peter)
built from the program above

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 7

∼suspend(john)

responsible(john)

poor_perf(john)

sick(john)

sick(john)

poor_perf(john)

〈S, Q〉 is a subargument of 〈A, L〉 if S is an argument for Q and S ⊆ A

S = {responsible(john) poor_perf(john), sick(john).}

A = {∼suspend(john) responsible(john).,
responsible(john) poor_perf(john), sick(john).}

Rebuttal and Defeat

G.R.Simari, ICLP 2004 27

Rebuttals or Counter-Arguments

In DeLP, answers are supported by arguments but
an argument could be defeated by other arguments.

Informally, a query L will succeed if the supporting
argument for it is not defeated.

In order to study this situation, rebuttals or counter-
arguments are considered.

Counter-arguments are also arguments, and
therefore this analysis must be extended to those
arguments, and so on.

This analysis is dialectical in nature.

G.R.Simari, ICLP 2004 28

Rebuttals or Counter-Arguments
Def: Let P = (Π, ∆) be a program. We will say that two literals

L1 and L2 disagree if the set Π ∪ {L1, L2 } is contradictory.

For example, given Π = { ∼L1 ← L2, L1 ← L3 } the set
{ L2, L3 } is contradictory.

Def: Let P = (Π, ∆) be a program. We say that 〈A1, L1〉
counter-argues, rebuts or attacks 〈A2, L2〉 at literal L, if and
only if there exists a sub-argument 〈A, L〉 of 〈A2, L2〉 such
that L and L1 disagree.

A2

L2

A1

L1

L

A

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 8

G.R.Simari, ICLP 2004 29

Rebuttals or Counter-Arguments
Given P = (Π, ∆), any literal P such that Π P, has the
support of the empty argument 〈∅, P〉.

Clearly, there is no posible counter-argument for any of
those P since there is no way of constructing an argument
which would mention a literal in disagreement with P.
On the other hand, any argument 〈∅, P〉 cannot be a
counter-argument for any argument 〈A, L〉 because of
the same reasons.
It is interesting to note that given an argument 〈A, L 〉, that
argument could contain multiple points where it could be
attacked.
Also, it would be very useful to have some preference
criteria to decide between arguments in conflict.

∼risky(acme)

in_fusion(acme,estron) strong(estron)

in_fusion(acme,estron) strong(estron)

∼buy_shares(acme)

good_price(acme) risky(acme)

good_price(acme) in_fusion(acme,estron)

in_fusion(acme,estron)

Π ∪ { risky(acme), ∼risky(acme) }
is a contradictory set

Counter-argument

Π ∪ {suspend(john) ∼suspend(john)}

∼suspend(john)

responsible(john)

poor_perf(john)

sick(john)

sick(john)

poor_perf(john)

poor_perf(john). sick(john).
good_perf(peter). unruly(peter)
suspend(X) ∼responsible(X).
suspend(X) unruly(X).
suspend(X) ∼responsible(X).
∼suspend(X) responsible(X).
∼responsible(X) poor_perf(X).
responsible(X) good_perf(X).
responsible(X) poor_perf(X), sick(X).

responsible(john)

poor_perf(john)

sick(john)

sick(john)

poor_perf(john)

Π ∪ {responsible(john), ∼responsible(john)} suspend(john)

∼responsible(john)

poor_perf(john)

poor_perf(john)

G.R.Simari, ICLP 2004 32

An argument 〈B, P〉 is a proper defeater for 〈A, L〉 if 〈B, P〉
is a counter-argument of 〈A, L〉 that attacks a subargument
〈S, Q〉 of 〈A, L〉 and 〈B, P〉 is better than 〈S, Q〉 (by the
chosen comparison criterion).

Defeaters

responsible(john)

poor_perf(john)

sick(john)

sick(john)

poor_perf(john)

suspend(john)

∼responsible(john)

poor_perf(john)

poor_perf(john)

Proper Defeater

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 9

G.R.Simari, ICLP 2004 33

An argument 〈B, P〉 is a proper defeater for 〈A, L〉 if 〈B, P〉 is
a counter-argument of 〈A, L〉 that attacks a subargument
〈S, Q〉 de 〈A, L〉 and 〈B, P〉 is not comparable to 〈S, Q〉
(by the chosen comparison criterion)

Defeaters

suspend(peter)

unruly(peter)

unruly(peter)

∼suspend(peter)

responsible(peter)

good_perf(peter)

good_perf(peter)

Blocking Defeater
G.R.Simari, ICLP 2004 34

Argument Comparison: Generalized Specificity

Def: Let P = (Π, ∆) be a program. Let ΠG be the set of strict
rules in Π and let F be the set of all literals that can be
defeasibly derived from P. Let 〈A1, L1〉 and 〈A2, L2〉 be
two arguments built from P, where L1, L2 ∈ F.
Then 〈A1, L1〉 is strictly more specific than 〈A2, L2〉 if:

1. For all H ⊆ F, if there exists a defeasible derivation
ΠG ∪ H ∪ A1 L1 while ΠG ∪ H L1 then
ΠG ∪ H ∪ A1 L2, and

2. There exists H′⊆ F such that there exists a defeasible
derivation ΠG ∪ H′ ∪ A2 L2 and ΠG ∪ H′ L2

but ΠG ∪ H′ ∪ A1 L1

(Poole, David L. (1985). On the Comparison of Theories: Preferring the Most Specific Explanation.
pages 144—147 Proceedings of 9th IJCAI.)

G.R.Simari, ICLP 2004 35

Argument Comparison: Generalized Specificity

Intuitively, this criteria prefers arguments with greater
informational content (i.e. more precise) and with less use of
rules (i.e. more concise).
For example, from program:
bird(X) ← chicken(X) chicken(tina)
flies(X) bird(X) scared(tina)
∼flies(X) chicken(X)
flies(X) chicken(X), scared(X)
It is possible to obtain
〈A1, ∼flies(tina)〉 with A1 = {∼flies(tina) chicken(tina) }
〈A2, flies(tina)〉 with A2 = { files(tina) bird(tina) }
〈A3, flies(tina)〉 with A3 = { flies(tina) chicken(tina), scared(tina) }
A3 is preferred to A1 because it is more precise more information).
A1 is preferred to A2 because it is more concise (direct).

G.R.Simari, ICLP 2004 36

Argument Comparison: Rule’s Priorities

Def: Let P = (Π, ∆) be a program, and let “>” be a
partial order defined on the defeasible rules in ∆.
Let 〈A1, L1〉 and 〈A2, L2〉 be two arguments obtained
from P. We will say that 〈A1, L1〉 is preferred to
〈A2, L2〉 if the following conditions are verified:

1. If there exists at least a rule ra∈A1 and a rule
rb∈A2 such that ra > rb; and

2. There is no pair of rules r′a∈A1 and r′b∈A2
such that r′b > r a

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 10

G.R.Simari, ICLP 2004 37

Argument Comparison: Rule’s Priorities
From the program:

buy_shares(X) good_price(X) good_price(acme)
∼buy_shares(X) risky(X) in_fusion(acme, estron)
risky(X) in_fusion(X, Y)

with rule preference:
∼buy_shares(X) risky(X) > buy_shares(X) good_price(X)

argument 〈A, ∼buy_shares(acme)〉 where
A = {∼buy_shares(acme) risky(acme),

risky(acme) in_fusion(acme, estron)}

will be preferred to argument
〈B, buy_shares(acme)〉 where
B = {buy_shares(acme) good_price(acme) }

G.R.Simari, ICLP 2004 38

An argument 〈B, P〉 is a defeater for 〈A, L〉 if 〈B, P〉 is a
counter-argument for 〈A, L〉 that attacks a subargument 〈S, Q〉
de 〈A, L〉 and one of the following conditions holds:

(a) 〈B, P〉 is better than 〈S, Q〉 (proper defeater), or

(b) 〈B, P〉 is not comparable to 〈S, Q〉 (blocking defeater)

A

L

B

P

Q

S

Defeaters

G.R.Simari, ICLP 2004 39

Defeaters: Example
From the program:

buy_shares(X) good_price(X) good_price(acme)
∼buy_shares(X) risky(X) in_fusion(acme, estron)
risky(X) in_fusion(X, Y)

With preference:
∼buy_shares(X) risky(X) > buy_shares(X) good_price(X)

The argument 〈A, ∼buy_shares(acme)〉 where
A = {∼buy_shares(acme) risky(acme),

risky(acme) in_fusion(acme, estron)}
is counter-argument of
〈B, buy_shares(acme)〉

where B = { buy_shares(acme) good_price(acme) }
that is a proper defeater of it.

G.R.Simari, ICLP 2004 40

Defeaters: Example
From the program:

pacifist(X) quaker(X)

∼pacifist(X) republican(X)

quaker(nixon)

republican(nixon)

With the preference defined by specificity:
〈A, ∼pacifist(nixon) 〉 where

A = {∼pacifist(nixon) republican(nixon) }

it is a blocking defeater for
〈 B, pacifist(nixon) 〉

where B = { pacifist(nixon) quaker(nixon) }

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 11

Argumentation Lines

G.R.Simari, ICLP 2004 42

Given P = (Π, ∆), and 〈A0, L0〉 an argument obtained from P. An
argumentation line for 〈A0, L0〉 is a sequence of arguments obtained
from P, denoted Λ = [〈A0, L0〉, 〈A1, L1〉, …] where each element in
the sequence 〈Ai, Li〉, i > 0 is a defeater for 〈Ai-1, Li-1〉.

A0

L0

A1

L1

Argumentation Line

A2

L2

A3

L3

A4

L4

43

Given an argumentation line Λ = [〈A0, L0〉, 〈A1, L1〉, …], the
subsequence ΛS = [〈A0, L0〉, 〈A2, L2〉, …] contains supporting
arguments and ΛI = [〈A1, L1〉, 〈A3, L3〉, …] are interfering
arguments.

Argumentation Line

A0

L0

A1

L1

A2

L2

A3

L3

A4

L4

ΛS

44

Argumentation Line

A0

L0

A1

L1

A2

L2

A3

L3

A4

L4

ΛI

Given an argumentation line Λ = [〈A0, L0〉, 〈A1, L1〉, …], the
subsequence ΛS = [〈A0, L0〉, 〈A2, L2〉, …] contains supporting
arguments and ΛI = [〈A1, L1〉, 〈A3, L3〉, …] are interfering
arguments.

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 12

G.R.Simari, ICLP 2004 45

Let’s consider a program P where:
〈A1, L1〉 defeats 〈A0, L0〉
〈A2, L2〉 defeats 〈A0, L0〉
〈A3, L3〉 defeats 〈A1, L1〉
〈A4, L5〉 defeats 〈A2, L2〉
〈A5, L5〉 defeats 〈A2, L2〉

Then, from 〈A0, L0〉 there exist several argumentation
lines such as:

Λ1 = [〈A0, L0〉, 〈A1, L1〉, 〈A3, L3〉]

Λ2 = [〈A0, L0〉, 〈A2, L2〉, 〈A4, L4〉]

Λ3 = [〈A0, L0〉, 〈A2, L2〉, 〈A5, L5〉]

Argumentation Lines

G.R.Simari, ICLP 2004 46

Argumentation Lines: Problems
There are several undesired situations that could appear in
argumentation lines.

Let’s see an example:
{ (d ∼b, c), (b ∼d, a), (∼b a), (∼d c), (a), (c) }

〈 A1, b 〉 = 〈 { (b ∼d, a), (∼d c) }, b 〉 is a proper defeater of

〈 A2, d 〉 = 〈 { (d ∼b, c), (∼b a) }, d 〉 and reciprocally.

Note 〈A1, b〉 is strictly more specific than the sub-argument
〈B, ∼b 〉 = 〈 { (∼b a) }, ∼b 〉 of A2 and 〈A2, d 〉 is strictly more specific
than the sub-argument 〈 C, ∼d 〉 = 〈 { (∼d c) }, ∼d 〉 of A1.

A1

b

A2

d
∼b

B
∼d

C

This will not be allowed since only
defeaters could be introduced.

G.R.Simari, ICLP 2004 47

The figure below shows another possible problem, this
leading to an infinite argumentation line.
In this case, the same argument is introduced again in the
same role that was introduced before (supporting).
The obvious solution is not to allow that.

A

∼r

B

∼p

p

W

Argumentation Lines: Problems

C

∼q

q

X

D

∼s

s

Y

A

∼r

r

Z

G.R.Simari, ICLP 2004 48

Nevertheless, in a more subtle way, it is possible to introduce
a sub-argument of an argument that is already introduced.
When 〈W, p〉 is introduced, that action allows to reintroduce
〈B, ∼p〉 and that leads to circular argumentation.

The problem came from the introduction of argument 〈W, p〉.

A

∼r

B

∼p

p

W

Argumentation Lines: Problems

C

∼q

q

X

D

∼s

s

Y

∼p

Z

p

W

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 13

G.R.Simari, ICLP 2004 49

In the picture below, the argumentation line shows the
problem created by reintroducing an argument.
This argument started as a supporting argument and it is
reintroduced as an interference argument.
The problem appears when argument 〈C, ∼q〉 is introduced
as a supporting argument, but it contains a counter-
argument for the original argument.

B

∼p

A

∼r

p

X

Argumentation Lines: Problems

C

∼q

q

Y

r

Z

A

∼r

Flipping sides G.R.Simari, ICLP 2004 50

Argumentation Lines: Problems
This leads to the notion of concordance in a line.
Given a program P = (Π, ∆), we will say that 〈A1, L1〉 is
concordant with 〈A2, L2〉 if and only if Π ∪ A1 ∪ A2 is non
contradictory.
In general, a set of arguments { 〈Ai, Li〉, i=1,…,n } is said
to be concordant if:

Π ∪ ∪
n

i=1 Ai

is non-contradictory.

We will require that in an argumentation line the set of
supporting arguments be concordant and the set of
interfering arguments be concordant.

G.R.Simari, ICLP 2004 51

Argumentation Lines: Problems
Let’s see another problem through the following example:

dangerous(X) tiger(X) tiger(hobbes)

∼dangerous(X) baby(X) baby(hobbes)

∼dangerous(X) pet(X) pet(hobbes)

with preference defined by specificity:
〈A1, ∼dangerous(hobbes) 〉 where A1 = { ∼dangerous(hobbes) baby(hobbes) }

will be blocked by
〈A2, dangerous(hobbes) 〉 where A2 = {dangerous(hobbes) tiger(hobbes) }

which in turn will be blocked by
〈A3, ∼dangerous(hobbes) 〉 where A3 = { ∼dangerous(hobbes) pet(hobbes)}

the line [A1, A2, A3] could be obtained but that will be incorrect since A2 was
already blocked by A1 and that would represent the policy that having two
arguments blocking a third is better than using only one argument to do that.

G.R.Simari, ICLP 2004 52

Acceptable Argumentation Line
Given a program P = (Π, ∆), an argumentation line

Λ = [〈A0, L0〉, 〈A1, L1〉, …] will be acceptable if:

1. Λ is a finite sequence (no circularity).

2. The set ΛS, of supporting arguments is concordant, and
the set ΛI, of interfering arguments is concordant.

3. There is no argument 〈Ak, Lk〉 in Λ that is a
subargument of a preceeding argument 〈Ai, Li〉, i < k.

4. For all i, such that 〈Ai, Li〉 is a blocking defeater for
〈Ai-1, Li-1〉, if there exists 〈Ai+1, Li+1〉 then 〈Ai+1, Li+1〉 is
a proper defeater for 〈A, Li〉 (i.e., 〈A, Li〉 could not be
blocked).

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 14

G.R.Simari, ICLP 2004 53

Argumentation Lines

A0

A1

A2

A3

A4

G.R.Simari, ICLP 2004 54

Argumentation Lines
A0

A1

B2

B3 Λ2

A0

A1

A2

A3

A4 Λ1

A0

A1

B2

C3

C4

C5 Λ3

A0

D1

D2 Λ4

G.R.Simari, ICLP 2004 55

Argumentation Lines
A0

A1

B2

B3 Λ2

A2

A3

A4 Λ1

A0

A1

B2

C3

C4

C5 Λ3

A0

D1

D2 Λ4

G.R.Simari, ICLP 2004 56

Argumentation Lines
A0

A1

B2

B3 Λ2

A2

A3

A4 Λ1

C3

C4

C5 Λ3

A0

D1

D2 Λ4

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 15

G.R.Simari, ICLP 2004 57

Argumentation Lines
A0

A1

B2

B3 Λ2

A2

A3

A4 Λ1

C3

C4

C5 Λ3

D1

D2 Λ4

Dialectical Tree

G.R.Simari, ICLP 2004 58

Dialectical Tree

A Dialectical Tree is the conjoint representation of all
the acceptable argumentation lines.

Given an argument A for a literal L, the dialectical tree
contains all acceptable argumentation lines that start
with that argument.

In that manner, the analysis of the defeat status for a
given argument could be carried out on the dialectical
tree.

As every argumentation line is admisible, and
therefore finite, every dialectical tree is also finite.

G.R.Simari, ICLP 2004 59

Dialectical Tree
Def: Let 〈A0, L0〉 be an argument built from a program P = (Π, ∆).

A dialectical tree for 〈A0, L0〉, denoted T 〈A0, L0〉
is defined as

follows:
1. The root of the tree is labeled 〈A0, L0〉

2. Let N be non-root node of the tree labeled 〈An, Ln〉, and

Λ= [〈A0, L0〉, 〈A1, L1〉, …, 〈An, Ln〉] the sequence of labels of
the path from the root to N. Let 〈B1, Q1〉, 〈B2, Q2〉, …, 〈Bk, Qk〉
be all the defeaters for 〈An, Ln〉.

For each defeater 〈Bi, Qi〉 (1≤ i ≤ k), such that the
argumentation line Λ′=[〈A0, L0〉, 〈A1, L1〉, …, 〈An, Ln〉, 〈Bi, Qi〉]
is acceptable, then the node N has a child Ni labeled 〈Bi, Qi〉.

If there is no defeater for 〈An, Ln〉 or there is no 〈Bi, Qi〉 such
that Λ′ is acceptable, then N is a leaf.

G.R.Simari, ICLP 2004 60

Marking of a Dialectical Tree

Internal nodes of T〈A, L〉

D

U

D D D

D

U DU U U

Leaves of
T〈A, L〉

D

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 16

G.R.Simari, ICLP 2004 61

Marking of a Dialectical Tree
Marking Procedure: Let T 〈A, L〉 be a dialectical tree for

〈A, L〉. The corresponding marked dialectical tree,
T *〈A, L〉, will be obtained marking every node in
T 〈A, L〉 as follows:

1. All leaves in T 〈A, L〉 are marked as U’s in T *〈A, L〉.

2. Let 〈B, Q〉 be an inner node of T 〈A, L〉. Then 〈B, Q〉
will be marked as U in T *〈A, L〉 if and only if every
child of 〈B, Q〉 is marked as D and the node 〈B, Q〉
will be marked as D if and only if it has at least a
child marked as U.

G.R.Simari, ICLP 2004 62

Dialectical Tree
A

Marking

G.R.Simari, ICLP 2004 63

Dialectical Tree
A

U

U

U

U

Marking

G.R.Simari, ICLP 2004 64

Dialectical Tree
A

UD

U D

U

D

U

Marking

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 17

G.R.Simari, ICLP 2004 65

Dialectical Tree
A

U

U

D

U

U

D

U

D

U

Marking

G.R.Simari, ICLP 2004 66

Dialectical Tree
A

D

U

U

D

U

U

D

U

D

U

Marking

G.R.Simari, ICLP 2004 67

Dialectical Tree
A

D

D

U

U

D

U

U

D

U

D

U

Marking

G.R.Simari, ICLP 2004 68

Dialectical Tree
A

D

D

U

U

D

U

U

D

U

D

U

Marking

U

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 18

G.R.Simari, ICLP 2004 69

Warranted Literals

Let P = (Π, ∆) be a defeasible program.
Let 〈A, L〉 be an argument and let T *〈A, L〉 be its
associated dialectical tree.
A literal L is warranted if and only if the root of
T *〈A, L〉 is marked as “U”.

That is, the argument 〈A, L〉 is an argument such
that each possible defeater for it has been defeated.

We will say that A is a warrant for L.

G.R.Simari, ICLP 2004 70

Dialectical Tree: Pruning
A

U

U

U

U

Pruning

G.R.Simari, ICLP 2004 71

Dialectical : Pruning Tree
A

D

U

U

U

U

Pruning

G.R.Simari, ICLP 2004 72

Answers in DeLP
If the strict part Π of a program P = (Π, ∆) is
inconsistent, any literal can be derived.

When it is possible to defeasible derive a pair of
complementary literals { L, ∼L } it is possible to
introduce a way to try to decide whether to accept one
of them.

Therefore, there are three different possible answers:
accept L, accept ∼L, or to reject both.

Also, if the program is used as a device to resolve
queries, a fourth possibility appears: the literal for which
the query is made is unknown to the program.

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 19

G.R.Simari, ICLP 2004 73

Answers in DeLP
Given a program P = (Π, ∆), and a query for L the

posible answers are:

• YES, if L is warranted.

• NO, if ∼L is warranted.

• UNDECIDED, if neither L nor ∼L are warranted.

• UNKNOWN, if L is not in the language of the
program.

G.R.Simari, ICLP 2004 74

Specification of the Warrant Procedure

warrant(Q, A) :- % Q is a warranted literal
find_argument(Q, A), % if A is an argument for Q
\+ defeated(A, [support(A, Q)]). % and A is not defeated

defeated(A, ArgLine) :- % A is defeated
find_defeater(A, D, ArgLine), % if there is a defeater D for A
acceptable(D, ArgLine, NewLine), % acceptable within the line
\+ defeated(D, NewLine). % and D is not defeated

find_defeater(A, D) :- % C is a defeater for A
find_counterarg(A, D, SubA), % if C counterargues A in SubA
\+ better(SubA, D). % and SubA is not better than C

Extensions and
Applications

G.R.Simari, ICLP 2004 76

Adding not

DeLP program rules can contain not as in
∼cross_railway_tracks not ∼train_is_coming
∼cross_railway_tracks cannot_wait,

not ∼train_is_coming

Is very simple to extend the notions of defeasible
derivation, argument and counter-argument.

If not L is a literal used in the body of a rule, there is
a new kind of attack on it, i.e. if we have an
undefeated argument for L then the argument that
contains a rule with not L will be defeated.

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 20

G.R.Simari, ICLP 2004 77

Work in Progress

Extending generalized specificity allowing utility values
for facts and rules, giving the possibility of introducing
pragmatic considerations.

Decision-Theoretic Defeasible Logic Programming will
be represented as P = (Π, ∆, Φ, B), where Π and ∆
are as before, B is a Boolean algebra with top and
bottom ⊥, and Φ is defined Φ: Π ∪ ∆ → B.

Paper in the 2004 Non Monotonic Reasoning Conf.
http://www.pims.math.ca/science/2004/NMR/add.html
or http://cs.uns.edu.ar/∼grs

78

Work in Progress
We just got the second place in the Robocup e-league using
Prolog (see http://cs.uns.edu.ar/~gis/robocup-TDP.htm.)
Now we are extending DeLP in a way of controlling the robots,

An action A will be an ordered triple 〈X, P, C〉, where X is a
consistent set of literals representing consequences of executing
A, P is a set of literals representing preconditions for A, C is a
set of constrains of the form not L, where L is a literal.

Actions will be denoted:

{X1, …, Xn } ←⎯ {P1, …, Pm }, not {C1, …, Ck }

where not {C1, …, Ck } means {not C1, …, not Ck }
and not Ci means Ci is not warranted.

{water_garden(today) } ←⎯⎯⎯ {∼rain(today)}, not {rain(X)}
See http://www.pims.math.ca/science/2004/NMR/ac.html
or http://cs.uns.edu.ar/∼grs

A

watergarden

G.R.Simari, ICLP 2004 79

Work in Progress
Implementation issues considering world dynamics.

The set of agent’s beliefs is formed by the warranted
literals, i.e., those literals that are supported by an
undefeated argument.

As an agent receive new perceptions, beliefs could change.

Because the process of calculating the new warrants is
computationally hard we have developed a system to
integrate precompiled knowledge in DeLP to address real
time constrains for belief change. Our goal is to avoid re-
computing arguments.

See http://web.dis.unimelb.edu.au/pgrad/iyadr/argmas/ or
http://cs.uns.edu.ar/∼grs

Work in Progress

Argument-Based RS Architecture

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 21

Work in Progress
C1-

C2+

C3+

en1
?

en2
?

Fuzzy
ART

Neural
Network

e1
+

e2
-

ek
+
.....

en1 is +
en2 is ...?New facts

User-specified
rules

Defeasible
Logic
Program
(DeLP)

DeLP Interpreter
?- is(en2,pos).

?- is(en2, neg).
FLAIRS 2004 http://fermat.eps.udl.es/~cic/

Belief Revision and
Defeasible Reasoning

G.R.Simari, ICLP 2004 83

Belief Revision

What is the motivation of belief revision?

To model the Dynamics of Knowledge

How can we do that?

Classical Logic

+ Selection Mechanism

Non-classical Logic

G.R.Simari, ICLP 2004 84

An Example
From the following beliefs

The bird caught in the trap is a swan
The bird caught in the trap comes from Sweden
Sweden is part of Europe
All European swans are white

It can be inferred that
The bird caught in the trap is white

Now, new information arrives:
The bird caught in the trap is black

What it should be thrown away?
(Example due Peter Gärdenfors and Hans Rott, Belief Revision.

Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 4,1995)

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 22

G.R.Simari, ICLP 2004 85

Epistemic Models

Belief Sets:
Sets of sentences closed under
logical consequence.

Belief Bases:
Arbitrary sets of sentences.

G.R.Simari, ICLP 2004 86

Epistemic Attitudes
Let K be a consistent belief base and let α be
a sentence.

α is accepted when α∈Cn(K)

α is rejected when ∼α∈Cn(K)

α is indetermined when α∉Cn(K) and ∼α∉Cn(K)

If K is inconsistent then every sentence is
accepted (and rejected).

G.R.Simari, ICLP 2004 87

Operations
Expansion (+): Allows to transform indetermined senteces in

accepted or rejected:
a) If is α indetermined in K then α is accepted in K+α

b) If is α indetermined in K then α is rejected in K+∼α

Contraction (,): Allows to transform accepted or rejected
sentences in indeterminded:
a) If is α accepted in K then α is indetermined in K,α

b) If is α rejected in K then α is indetermined in K,∼α

Revision (∗): Allows to transform sentencias accepted in
rejected and to transform rejected sentences in accepted:
a) If is α accepted in K then α is rejected in K∗∼α

b) If is α rejected in K then α is accepted in K∗α

G.R.Simari, ICLP 2004 88

Operations
Expansion (+):

K+α = Cn(K ∪ { α }) (Belief Sets)

K+α = K ∪ { α } (Belief Bases)

Contraction (,)

Revision (∗)
How can they be defined?

Two possibilities have been introduced:

Levi Identity: K∗α = (K,∼α)+α

Harper Identity: K,α = K ∩ K∗∼α

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 23

G.R.Simari, ICLP 2004 89

Contraction Postulates
Let K be a Belief Set.

Closure: K,α is a belief set.

Inclusion: K,α ⊆ K

Vacuity: if α ∉ K then, K,α = K

Success: if α then α ∉ K,α

Recovery: if α ∈ K then, K ⊆ (K,α)+α

Equivalence: if α↔β, then K,α = K,β

G.R.Simari, ICLP 2004 90

Change Operators

Construction:
An Algorithm

Postulates:
Properties
satisfied?

91

Partial Meet Contraction
Construction:

K⊥α={H: H⊆K, α∉Cn(H) and for all H⊂H′⊆K then α∈Cn(H′)}

K,α = ∩γ(K⊥α)

Example:
K = { a, b, a ∧ b → c, d }

K⊥c = {K1, K2, K3} = {{ a, b, d }, { a, a∧b → c,d }, { b, a∧b → c,d }}

Some possible results of K,c:

{ a, b, d } γ(K⊥c) = { K1 }

{ a, d } γ(K⊥c) = { K1, K2 }

{ a ∧ b → c, d } γ(K⊥c) = { K2, K3 }

{ d } γ(K⊥c) = { K1, K2, K3 }

Selection Function

γ(K⊥α) ⊆ K⊥α

if K⊥α≠∅, then γ(K⊥α)≠∅
otherwise γ(K⊥α)= K

G.R.Simari, ICLP 2004 92

Kernel Contraction

Kernel mode:
Let K be a set of sentences and α be a
sentence.
We found all minimal subsets of K implying
α (called α-kernels).
We “cut” the α-kernels by means of an
incision function σ and then we eliminate the
cut set from K.

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 24

G.R.Simari, ICLP 2004 93

Example:
K = { a, a → c, b, b → c, d, ∼e }

K+ c ={{ a, a → c }, { b, b → c }}

Some possible results of K−c:

 { a → c, b → c, d, ∼e } σ(K+ c) = { a, b }

 { a, b → c, d, ∼e } σ(K+ c) = { a → c, b }

 { b → c, d, ∼e } σ(K+ c) = { a, a → c, b }

 { d, ∼e } σ(K+ c) = { a, a → c, b, b → c }

Kernel Contraction
Construction:

K + α = {H: H⊆K, α∈Cn(H) and for all H′⊂H then α∉Cn(H′)}
K,α = K \σ(K+ α)

Incision Function

σ(K+α)⊆∪ K+α

if x ∈ K + α and x ≠∅, then
x ∩σ(K+α) ≠∅

G.R.Simari, ICLP 2004 94

Controversial Postulates
Every construction of a change operator is
charaterized by postulates.

In the AGM model, there are some controversial
postulates.

Contraction:

Recovery: K ⊆ (K,α)+α

Revision:

Success: α∈K∗α

Consistency: If α is consistent then K∗α is
consistent.

Explanations, Belief
Revision and

Defeasible Reasoning

G.R.Simari, ICLP 2004 96

Belief Bases

There are two kinds of beliefs:

Explicit Beliefs: all the sentences in the belief
base.

Implicit Beliefs: all sentences derived from the
belief base.

The implicit beliefs are “explained”
from more basic beliefs.

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 25

G.R.Simari, ICLP 2004 97

Explanations
An explanans justifies an explanandum.

Set of sentences A sentence

Notation: A α

Properties:
Deduction: A α
Consistency: It is not the case that A ⊥
Minimality: There is no set A′⊂ A such that A′ α
Informational Content: It is not the case that α A

G.R.Simari, ICLP 2004 98

Informational Content

It is not the case that α A

This postulate precludes the following cases:

Self-explanation:

{ α } α

Redundancy:

{ α ∨ β, α ∨ ∼β } α

G.R.Simari, ICLP 2004 99

New change operators

We will define operators for revision with respect
to an explanans (i.e., a set of sentences).

The idea is the following:

Instead of incorporating a sentence α we
request an explanans A for α.

We add A to K

Then, we restore consistency
(Consolidation).

G.R.Simari, ICLP 2004 100

New change operators

A Explanans for α
K

(K ∪A),⊥

K∪A
Possibly

inconsistent
state

α might not be accepted

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 26

G.R.Simari, ICLP 2004 101

Two kinds of Constructions

Partial Meet Revision by a set of sentences:

K A = (K∪A),⊥
Partial Meet Contraction Operator

Kernel Revision by a set of sentences:

K A = (K∪A),⊥
Kernel Contraction Operator

G.R.Simari, ICLP 2004 102

Different kinds of beliefs
Particular Beliefs:

car(ferrari) bird(opus)

General Beliefs:

∀x(car(x)→vehicle(x)) ∀x(bird(x)→flies(x))

The strategy: all beliefs removed in a change
process are preserved in a different status.

G.R.Simari, ICLP 2004 103

Transformation of Beliefs

Transf ((∀x)(p(x)→q(x)))

p(x) q(x) p(x) : q(x)
q(x)

or

Defeasible rule in
Argumentative Systems

Default rule in
Default Theories

G.R.Simari, ICLP 2004 104

Epistemic Model

A knowledge structure [K, ∆] where:

K is the undefeasible knowledge.

∆ is the defeasible knowledge represented by:

Defeasible conditionals in Argumentative
Systems; or

Default rules in Default Theories.

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 27

G.R.Simari, ICLP 2004 105

Changes

[K, ∆] A = [K′,∆′]
where:

K′ = K A

∆′ = ∆ ∪ { Transf(α): α ∈K \K A }

G.R.Simari, ICLP 2004 106

Example

K = { bird(tweety), bird(opus),

∀x(peng(x)→bird(x)), ∀x(bird(x)→fly(x))}

From K we may conclude that:

bird(tweety), bird(opus), fly(tweety), fly(opus)

Then, we receive the next explanans A for ∼fly(opus):

{ bird(opus), peng(opus),

∀x(peng(x)∧bird(x)→∼fly(x) }

G.R.Simari, ICLP 2004 107

Example
In order to obtain K A we need to eliminate
contradictions from K ∪A.

K ∪A = { bird(tweety), bird(opus), peng(opus),

∀x(peng(x)→bird(x)), ∀x(bird(x)→fly(x)),

∀x(peng(x)∧bird(x)→∼fly(x)}}

We could give up particular or general beliefs.

If we discard general beliefs, we could select the
less specific beliefs, for instance, ∀x(bird(x)→fly(x)).

G.R.Simari, ICLP 2004 108

Example
Then, we have the following belief base:
K A = { bird(tweety), bird(opus), ∀x(peng(x)→bird(x)),

peng(opus),∀x(peng(x)∧bird(x)→∼fly(x)) }

From K A me may conclude that:
bird(tweety), bird(opus), peng(opus), ∼fly(opus)

We can’t conclude fly(tweety) even though it is consistent
with K.

This problem can be solved if we preserve the
defeasible conditional bird(x) fly(x) or the default rule
bird(x) : fly(x) / fly(x).

Defeasible Logic Programming and Belief Revision – ICLP 2004 Sept. 9, 2004

Guillermo R. Simari 28

G.R.Simari, ICLP 2004 109

Example

That is, we have the following knowledge:

K A = { bird(tweety), bird(opus), peng(opus),
∀x(peng(x) ∧ bird(x)→∼fly(x))}

∆ = { bird(x) fly(x) }

From [K A , ∆] we can infer that:

bird(tweety), bird(opus), peng(opus),
∼fly(opus), fly(tweety)

We have a new epistemic model and a new set of
epistemic attitudes.

G.R.Simari, ICLP 2004 110

Two Interesting Surveys

Logical Systems for Defeasible Argumentation, H.
Prakken, G. Vreeswijk, in D. Gabbay (Ed.), Handbook
of Philosophical Logic, 2nd Edition, 2000.

Logical Models of Argument, C. I. Chesñevar, A. G.
Maguitman, R. P. Loui, ACM Computing Surveys,
32(4), pp 337-383, 2000.

G.R.Simari, ICLP 2004 111

References for the work presented (Short List)

Defeat Among Arguments: A System of Defeasible Inference,
R. P. Loui, Computational Intelligence, Vol 3, 3, 1987.
Defeasible Reasoning, J. Pollock, Cognitive Science, 11, 481-
518, 1987.
Defeasible Reasoning: A Philosophical Analysis in PROLOG,
Donald Nute, in J. H. Fetzer (Ed.) Aspects of Artificial
Intelligence, 1988.
A Mathematical Treatment of Defeasible Reasoning and Its
Implementation, G. R. Simari, R. P. Loui, Artificial Intelligence,
53, 125-157, 1992.
An Argumentation Semantics for Logic Programming with
Explicit Negation. P. M. Dung, in Proceedings 10th. Intenational
Conference on Logic Programming, 616-630, 1993.

G.R.Simari, ICLP 2004 112

References for the work presented (Short List)

Cognitive Carpentry: A Blueprint for How to Build a Person. J.
Pollock. MIT Press, 1995.
An Abstract, Argumentation-Theoretic Approach to Default
Reasoning, A. G. Bondarenko, P. M. Dung, R. A. Kowalski, F.
Toni, Artificial Intelligence (93), 1-2, 63-101, 1997.
Abstract Argumentation Systems, G. Vreeswijk, Artificial
Intelligence, 90, 225-279, 1997.
Explanations, Belief Revision and Defeasible Reasoning, M.
Falappa, G. Kern-Isberner, G. R. Simari, Artificial Intelligence
141 (2002) 1-28.
Defeasible Logic Programming: An Argumentative Approach, A.
J. García, G.R. Simari, Theory and Practice of Logic
Programming. Vol 4(1), 95-138, 2004.

