

Outline

- (Very brief) Introduction to Multiagent Systems
- What is argumentation? Fundamentals
- A Case Study: DeLP and its extensions as an argument-based approach to logic programming.
- Argumentation meets agents: argument-based negotiation
- Conclusions

	Types of Dialogues				
	Туре	Initial Situation	Main Goal	Participant's aims	Subtypes
	Information seeking	Personal ignorance	Spreading knowledge	Gain, pass on, show, or hide knowledge	 Expert consultation Interview Interrogation
	Persuasion	Conflicting Beliefs	Resolution of conflict by verbal means	Persuade the other(s)	Dispute
	Inquiry	General Ignorance	Growth of knowledge & agreemt'	Find a proof or destroy one	Scientific Research Investigation
Coi	mputational Models for Arg	umentation in Multiagent	Systems – EASSS 2005		3

Туре	Initial Situation	Main Goal	Participant's aims	Subtypes
Deliberation	Need for action	Reach a decision	Influence Outcome	Board meetingWar planning
Negotiation	Conflict of interests & need for cooperation	Making a deal	Get the best for oneself	 Bargaining Union negotiation Land dispute
Typology by	Walton & Krat	bbe, 1995		

Game Theory

Branch of economics

Study rational decisons (& outcomes) in multi-party strategic decision making

Agents seen as utility maximizers

Given a mechanism → analyze strategies & outcomes

What mechanism to design?

nputational Models for Argumentation in Multiagent Systems – EASSS 2005

Problems with Game-Theoretic Approaches

Assumption of perfect rationality:

- Each agent knows space of possible deals
- Each agent knows how to evaluate such deals
- Each agent knows space of possible strategies
- No time constraints (decisions computed instantly)
- No computation cost
- Optimal recursive modelling of opponents
- Game theory says *nothing about how to program the agent*, *e.g.,*
 - How to compute the utility function
 - How to compute the space of possible strategies

Computational Models for Argumentation in Multiagent Systems – EASSS 2005

In Game-Theoretic and Heuristic approaches \rightarrow share some limitations

- E.g. agents exchange *proposals* (potential agreements or deals). Ags are not allowed to exchange any additional information (e.g.: network goods such as fax machines)
- Agents' *utilities or preferences* are assumed to be *completely characterised prior to the interaction*.
- Agents' preferences are assumed to be *proper* (ie, they reflect the true benefit the agent gets).
- Game theoretic and heuristic approaches assume that agents' utilities or preferences are *fixed* (ie, agents cannot influence on other agents' preference models or internal mental attitudes).

Argumentation-based approaches attempt to overcome these limitations...

Argumentation

Argument:

 Reason/justification for some conclusion (belief, action, value, goal, etc.)

Argumentation:

Computational Models for Argumentation in Multiagent Systems – EASSS 2005

 Reasoning about arguments → decide on conclusion

Dialectical argumentation

Multi-party argumentation through dialogue

	Advantages	Disadvantages
Game-theoretic	Strong analytical results	 Assumed fix, correct and complete preferences Says little about how to program agents
Heuristic-based	Concentrate on programming agents	 Assumed fix, correct and complete preferences Hard to validate strategies
Argumentation- based	Very expressive Preferences can change	 Validating strategies still at very early stages

Comm.Language & Domain Language

Communication Language: characterized by locutions, utterances or speech acts (*propose, accept, reject*, etc.)

Domain language: used for referring to concepts of the environment. E.g. (Sierra et. Al, 1998)

Offer $(a, b, Price = \$200 \land Item = palm130, t_1)$ Agent a <u>offers</u> agent b a Palm130 for the price of \$200 at time t_1

Reject (b, a, Price= $200 \land \text{Item}=\text{palm}130, t_2$) Agent b <u>rejects</u> proposal from agent a at time t_2

Computational Models for Argumentation in Multiagent Systems – EASSS 2005

	Non-ABN Frameworks	ABN Frameworks
Domain language	Expresses proposals only	Expresses proposals as well as metainformation about the world (beliefs, prefs., etc.)
Communication language	Locutions allow agents to pass call for bids, proposals, acceptance, etc.	In addition, locutions allow agents to pass meta-information

<text><text><equation-block><text><text><text><text><text>

Elements of ABN Agents

What constitutes a basic non-ABN negotiating agent? We can distinguish a number of components...

- Locution interpretation: parses incoming messages
- Proposal Database: stores proposals for future reference
- *Proposal Evaluation/Generation*: ultimately makes a decision about whether to accept, reject, terminate negotiation, etc.
- *Locution generation*: sends the response to the relevant party or parties.

Computational Models for Argumentation in Multiagent Systems – EASSS 2005

"Count on you" approach (Sadri et. al, 2001): not argue about beliefs *e.g.*:

- Agent A receives a request from Agent B for a resource that he needs it for achieving goal G_A with a plan P.
- Agent A rejects the request, unless an alternative acceptable plan P' for G_A can be produced by B, with a promise to provide A with every needed resource for plan P'.

Agents are assumed to have some ordering in their plans.

In both approaches, we are relying on the (rather naive) assumption that agents accept **any request on resources that they do not currently need.** What if agents are purely self-interested, and want "something in return"?

References
C. Chesñevar, A. Maguitman. <i>ArgueNet: An Argument-Based Recommender System for Solving Web Search Queries.</i> Procs. of the 2nd. International IEEE Conference on Intelligent Systems (IS 2004). Varna, Bulgaria, June 2004 Pp. 282-287.
C. Chesñevar, R. Brena, J. Aguirre. <i>Knowledge Distribution in Large Organizations Using Defeasible Logic Programming.</i> In Procs. of the 18th Canadian Conference in Artificial Intelligence (AI 2005). Victoria, British Columbia, Canada, May 2005.
P. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321-358, 1995.
M. Falappa, G. Kern-Isberner, G. R. Simari. <i>Explanations, Belief Revision and Defeasible Reasoning</i> ,, Artificial Intelligence 141 (2002) 1-28.
P. Faratin, C. Sierra, N. Jennings. Negotiation decision functions for autonomous agents. Intl. Journal of Robotics and Autonomous Systems, 24(3-4):159-182,1998.
P. Faratin, C. Sierra, N. Jennings. Using similarity criteria to make trade-offs in automated negotiations. AI Journal, 142(2):205-237, 2002.
S. Fatima, M. Wooldridge, N. Jennings. Optimal negotiation strategies for agents with incomplete information. In Proc. 8th Intl. ATAL Workshop, 2001 (LNCS 2333).
S. Fatima, M. Wooldridge, N. Jennings. An agenda based framework for multi-issues negotiation. Al Journal, 152(1):1-45, 2004.
58

	References
· · · · · · ·	 S. Ramchurn, C. Sierra, L. Godo, N. Jennings. A computational trust model for multiagent interactions based on confidence and reputation. In Proc. Of the workshop on Deception, Fraud and Trust in Agent Societies, pp. 69-75, Australia, 2003. J. Rodriguez Aguilar, C. Sierra. Enabling open agent institutions. In Socially Intelligent Agents: Creating Relationships with computers and robots, pp.259-266, Kluwer. F. Sadri, F. Toni, P. Torroni. Logic agents, dialogues and negotiation: an abductive approach. In Proc. AISB 2001. F. Sadri, F. Toni, P. Torroni. Abductive logic programming architecture for negotiating agents. In Proc. JELIA 2002 (LNCS 2424, pp.419-431). C. Sierra, N. Jennings, P. Noriega, S. Parsons. A framework for argumentation-based negotiation. In 4th Intl. ATAL Workshop (LNAI 1365, pp. 177-192). G. R. Simari, R. P. Loui. A Mathematical Treatment of Defeasible Reasoning and Its Implementation, Artificial Intelligence, 53, 125-157, 1992. G. R. Simari, A. García, M. Capobianco. Actions, Planning and Defeasible Reasoning. In Proc. 10th Intl. NMR 2004, Whistler BC, Canada. Pp. 377-384, 2004. J. Pollock. Defeasible Reasoning, Cognitive Science, 11, 481-518, 1987. F. Tohmé, G. R. Simari. Preferential Defeasiblity: Utility in Defeasible Logic Programming. In Proc. 10th Intl. NMR 2004, Whistler BC, Canada. pp. 394-399, 2004.
	60

