
A Preliminary Investigation on a Revision-Based
Approach to the Status of Warrant∗

Mart�́n O. Moguillansky
Marcelo A. Falappa

Nicolás D. Rotstein
Guillermo R. Simari

Consejo de Investigaciones Cient�́�cas y Técnicas (CONICET)
Laboratorio de Investigación y Desarrollo en Inteligencia Arti�cial (LIDIA)

Departamento de Ciencias e Ingenier�́a de la Computación (DCIC)
Universidad Nacional del Sur (UNS)

Av. Alem 1253 - (B8000CPB) Bah�́a Blanca - Argentina
PHONE/FAX: (+54)(291)459-5136

E-MAIL: {mom, ndr, mfalappa, grs}@cs.uns.edu.ar

Abstract

In this article we are presenting a new perspective on the matter of belief revision by its relation
to argumentation systems. Our approach is based on the argumentative formalism Defeasible
Logic Programming, and therefore we propose a revision of a defeasible logic program by an
argument. The revision operators here introduced are de�ned as prioritized, since they ensure
warrant of the conclusion of the argument being added to the program following a particular
minimal change principle. To achieve this, we give two different approaches: one regarding
arguments in the classical sense, whereas the other considers the revision by arguments that also
include strict rules and facts. Finally, a brief discussion about the relation between our approach
and the basic theory of belief revision is exposed, along with a description of other possible
minimal change principles.

Keywords: belief revision, argumentation, defeasible logic programming, non-monotonic reasoning.

1 Introduction & Motivation
This work offers a �rst approach to revision in argumentation systems, using Defeasible Logic Pro-
gramming (DELP) as base formalism. The objective is to de�ne an argument revision operator that
ensures warrant of the conclusion of the (external) argument being added to a program. In that sense,
this operator will be prioritized. When we revise a program P by an argument 〈A, α〉, the program
resulting from the revision will be such that A is an undefeated argument and α is then warranted.
Because of this, we named the operator warrant-prioritized revision operator.

∗This article assumes background knowledge on argumentation and belief revision from the reader.
Partially �nanced by CONICET (PIP 5050), Universidad Nacional del Sur (PGI 24/ZN11) and Agencia Nacional de

Promoción Cient�́�ca y Tecnológica (PICT 2002 Nro 13096).



The main issue underlying warrant-prioritized argument revision lies in the selection of arguments
and the incisions that have to be made over them. Incisions will make these arguments �disappear�,
but selections have to be done carefully, following some minimal change principle. In this work, we
present one minimal change principle, thus de�ning a warrant-prioritized revision operator. The cor-
responding selection and incision functions are de�ned, along with some properties it should verify.
This revision operator is therefore reconsidered, by applying it to extended arguments.

The article is structured as follows: Section 2 gives an overview of the main concepts involved in
the DELP formalism, Section 3 describes the notions of the belief revision theory we inspired from
to de�ne this approach, Section 4 explains in detail the two versions of the revision operator, and
Section 5 gives a �nal discussion on revision in argument systems and poses future lines of work.

2 DeLP Overview
Defeasible Logic Programming (DELP) combines results of Logic Programming and Defeasible Ar-
gumentation. The system is fully implemented and is available online [1]. A brief explanation is
included below (see [6] for full details). A DELP-program P is a set of facts, strict rules and de-
feasible rules. Facts are ground literals representing atomic information or the negation of atomic
information using the strong negation �∼� (e.g., chicken(little) or ∼scared(little)). Strict Rules
represent non-defeasible information and are denoted L0← L1, . . . , Ln, where L0 is a ground literal
and {Li}i>0 is a set of ground literals (e.g., bird← chicken) or ∼innocent← guilty). Defeasible
Rules represent tentative information and are denoted L0 �≺L1, . . . , Ln, where L0 is a ground literal
and {Li}i>0 is a set of ground literals (e.g., ∼flies �≺chicken or flies �≺chicken, scared).

When required, P is denoted (Π, ∆) distinguishing the subset Π of facts and strict rules, and the
subset ∆ of defeasible rules (see Ex. 1). Strong negation is allowed in the head of rules, and hence
may be used to represent contradictory knowledge. From a program (Π, ∆) contradictory literals
could be derived. Nevertheless, the set Π (which is used to represent non-defeasible information)
must possess certain internal coherence, i.e., no pair of contradictory literals can be derived from Π.

A defeasible rule is used to represent tentative information that may be used if nothing could be
posed against it. Observe that strict and defeasible rules are ground. However, following the usual
convention [12], some examples use �schematic rules� with variables. To distinguish variables, as
usual, they start with an uppercase letter.

Example 1 Consider the DELP-program (Π1, ∆1) where:
Π1 =

{
(bird(X)← chicken(X)) chicken(little)
chicken(tina) scared(tina)

}

∆1=





flies(X) �≺bird(X)
flies(X) �≺chicken(X), scared(X)
∼flies(X) �≺chicken(X)





This program has three defeasible rules representing tentative information about the �ying ability
of birds in general, and about regular chickens and scared ones. It also has a strict rule expressing
that every chicken is a bird, and three facts: `tina' and `little' are chickens, and `tina' is scared.

From a program is possible to derive contradictory literals, e.g., from (Π1, ∆1) of Ex. 1 it is
possible to derive flies(tina) and∼flies(tina). For the treatment of contradictory knowledge DELP
incorporates a defeasible argumentation formalism. This formalism allows the identi�cation of the
pieces of knowledge that are in contradiction, and a dialectical process is used for deciding which
information prevails as warranted. This dialectical process (see below) involves the construction and



evaluation of arguments that either support or interfere with the query under analysis. As we will
show next, arguments supporting the answer for a given query will be shown in a particular way using
dialectical trees. The de�nition of dialectical tree will be included below, but �rst, we will give a
brief explanation of other related concepts (for the details see [6]).

De�nition 1 (Argument Structure) Let (Π, ∆) be a DELP-program, 〈A, α〉 is an argument struc-
ture for a literal α from (Π, ∆), ifA is the minimal set of defeasible rules (A⊆∆), such that: (1) there
exists a defeasible derivation for α from Π ∪ A, and (2) the set Π ∪ A is non-contradictory.

Example 2 From the DELP-program (Π1, ∆1) the following arguments can be obtained:
〈A1, f lies(tina)〉 = 〈{flies(tina) �≺bird(tina)}, f lies(tina)〉
〈A2,∼flies(tina)〉 = 〈{∼flies(tina) �≺chicken(tina)},∼flies(tina)〉
〈A3, f lies(tina)〉 = 〈{flies(tina) �≺chicken(tina), scared(tina)}, f lies(tina)〉

A literal L is warranted if there exists a non-defeated argument A supporting L. To establish if
〈A, α〉 is a non-defeated argument, defeaters for 〈A, α〉 are considered, i.e., counter-arguments that
by some criterion are preferred to 〈A, α〉. In DELP, the comparison criterion is usually generalized
speci�city, but in the examples given in this paper we will abstract away this criterion, since in this
work it introduces unnecessary complications. Since defeaters are arguments, there may exist de-
featers for them, and defeaters for these defeaters, and so on. Thus, a sequence of arguments called
dialectical line is constructed, where each argument defeats its predecessor. To avoid undesirable
sequences, that may represent circular or fallacious argumentation lines, in DELP a dialectical line is
acceptable if it satis�es certain constraints (see [6]).

Example 3 From Ex. 2, we have that argument 〈A2,∼flies(tina)〉 defeats 〈A1, f lies(tina)〉, argu-
ment 〈A3, f lies(tina)〉 is a defeater for 〈A2,∼flies(tina)〉, and the arguments sequence
[〈A1, f lies(tina)〉, 〈A2,∼flies(tina)〉, 〈A3, f lies(tina)〉] is an acceptable argumentation line.

Clearly, there might be more than one defeater for a particular argument. Therefore, many accept-
able argumentation lines could arise from one argument, leading to a tree structure.

De�nition 2 (Dialectical tree [6]) A dialectical tree for 〈A0, h0〉, denoted T (〈A0, h0〉), is de�ned as
follows:
(1) The root of the tree is labelled with 〈A0, h0〉.
(2) Let N be a node of the tree labelled 〈An, hn〉, and
Λ = [〈A0, h0〉, 〈A1, h1〉, . . . , 〈An, hn〉] be the sequence of labels of the path from the root to N .
Let { 〈B1, q1〉, 〈B2, q2〉, . . ., 〈Bk, qk〉 } be the set of all the defeaters for 〈An, hn〉. For each defeater
〈Bi, qi〉 (1 ≤ i ≤ k), such that, the argumentation line Λ′ = [〈A0, h0〉, 〈A1, h1〉, . . . , 〈An, hn〉, 〈Bi, qi〉]
is acceptable, then the node N has a child Ni labelled 〈Bi, qi〉.
If there is no defeater for 〈An, hn〉 or there is no 〈Bi, qi〉 such that Λ′ is acceptable, then N is a leaf.

In a dialectical tree, every node (except the root) represents a defeater of its parent, and leaves
correspond to non-defeated arguments. Each path from the root to a leaf corresponds to a different
acceptable argumentation line. A dialectical tree provides a structure for considering all the possible
acceptable argumentation lines that can be generated for deciding whether an argument is defeated.
We call this tree dialectical because it represents an exhaustive dialectical analysis for the argument
in its root.

Given a literal h and an argument 〈A, h〉 from a program P , to decide whether a literal h is
warranted, every node in the dialectical tree T (〈A, h〉) is recursively marked as �D� (defeated) or
�U� (undefeated), obtaining a marked dialectical tree T ∗

P (〈A, h〉) as follows:



1. All leaves in T ∗
P (〈A, h〉) are marked as �U�s, and

2. Let 〈B, q〉 be an inner node of T ∗
P (〈A, h〉). Then 〈B, q〉 will be marked as �U� iff every child

of 〈B, q〉 is marked as �D�. The node 〈B, q〉 will be marked as �D� iff it has at least a child
marked as �U�.

Given an argument 〈A, h〉 obtained from P , if the root of T ∗
P (〈A, h〉) is marked as �U�, then we

will say that T ∗
P (〈A, h〉) warrants h and that h is warranted from P .

In this paper, marked dialectical trees will be depicted as a tree of triangles where edges denote
the defeat relation (in Figure 1, three marked dialectical trees are shown). An argument 〈A, h〉 will be
depicted as a triangle, where its upper vertex is labelled with the conclusion h, and the set of defeasible
rules A are associated with the triangle itself. Gray triangles will be undefeated arguments, whereas
white triangles will depict defeated arguments. In the rest of the article we will refer to marked
dialectical trees just as �D-tree�.

A
2

A
3

~flies(tina)

flies(tina)

A
1

flies(tina)

A
3

flies(tina)

A
2

~flies(tina)

A
3

flies(tina)

Figure 1: D-trees for flies(tina)

Example 4 (Extends Ex. 3) Figure 1 shows the D-tree for T ∗
P 1

(〈A1, f〉) (the leftmost tree), which
has only one argumentation line. Observe that the argument 〈A2,∼f〉 interferes with the warrant of
`�ies(tina)' and the argument 〈A3, f〉 reinstates 〈A1, f〉. The root of T ∗

P 1
(〈A1, f〉) is marked as �U�

and therefore the literal `�ies(tina)' is warranted.

3 Belief Revision Overview
A belief base is a knowledge state represented by a set of sentences not necessarily closed under
logical consequence. A belief set is a set of sentences in a given language, closed under logical
consequence. In general, a belief set is in�nite being this the main reason of the impossibility to deal
with this kind of sets in a computer. Instead, it is possible to characterize the properties that each of
the change operations should satisfy on any �nite representation of a knowledge state.

Classic operations in the theory change [2] are known as expansions, contractions, and revisions.
An Expansion operation noted with �+�, adds a new belief to the epistemic state, without guaran-
teeing its consistency after the operation. A Contraction operation, noted with �−�, eliminates a
belief α from the epistemic state and those beliefs that make possible its deduction or inference. The
sentences to eliminate might represent the minimal change on the epistemic state. Finally, a Revision
operation (�∗�) inserts sentences to the epistemic state, guaranteeing consistency (if it was consistent
before the operation). This means that a revision adds a new belief and perhaps it eliminates other
ones in order to avoid inconsistencies.

Other non-classical operations exists, like Merge [13] noted with � ◦ �, which fusions belief bases
or sets assuring a consistent resultant epistemic state, and Consolidations (� ! �) that restore consis-
tency to a contradictory epistemic state. Usually, slight extensions or modi�cations of these opera-
tions are needed in order to capture different improved features of the environment required to work



in. This is the case of the operator � ¦ � used to represent a Kernel Revision by a Set of Sentences
[4] operation, which de�nes a non-prioritized version of a kernel revision operation, providing the
knowledge to be revised and its logical proof (or argument) given by a consistent set of sentences.

3.1 Kernel Contractions
The Kernel Contraction operator, applicable to belief bases and belief sets, consists of a contraction
operator capable of the selection and elimination of those beliefs in K that contribute to infer α.

De�nition 3 (Set of Kernels [9]) Let K be a set of sentences and α a sentence. The set K⊥⊥α, called
set of kernels is the set of sets K ′ such that (1) K ′ ⊆ K , (2) K ′ ` α , and (3) if K ′′ ⊂ K ′ then
K ′′ 0 α. The set K⊥⊥α is also called set of α-kernels and each one of its elements are called α-kernel.

For the success of a contraction operation we need to eliminate, at least, one element of each
α-kernel. The elements to be eliminated are selected by an Incision Function.

De�nition 4 (Incision Function [9]) Let K be a set of sentences and “σ” be an incision function
for it such that for any sentence α it veri�es, (1) σ(K⊥⊥α) ⊆ ⋃

(K⊥⊥α) and (2) If K ′ ∈ K⊥⊥α and
K ′ 6= ∅ then K ′ ∩ σ(K⊥⊥α) 6= ∅.

Once the incision function was applied we must eliminate from K those sentences that the incision
has selected, i.e., the new belief base would consist of all those sentences that kept outside of the scope
of σ.

De�nition 5 (Kernel Contraction Determined by “σ” [9]) Let K be a set of sentences, α a sen-
tence, and K⊥⊥α the set of α-kernels of K. Let “σ” be an incision function for K. The operator
“−σ ”, called kernel contraction determined by “σ”, is de�ned as, K −σ α = K\σ(K⊥⊥α).

Finally, an operator “ − ” is a kernel contraction operator for K if and only if there exists an
incision function “σ” such that K − α = K −σ α for all sentence α.

3.2 Consistent Incorporation of Beliefs
A revision operator �∗� looks for the addition of the new belief α to the belief set K, and therefore
the assurance that the resulting belief set K ∗ α is consistent (unless α is inconsistent). The �rst task
can be accomplished by expansion by α. The second can be accomplished by prior contraction by its
negation ∼α. If a belief set does not imply ∼α, then α can be added to it without loss of consistency.
This composition of sub-operations gives rise to the following de�nition of a revision operator [7, 11]:

(Levi Identity) K ∗ α = (K −∼α) + α

We will de�ne the revision operation in a set K regarding a sentence α, by means of the Levi
Identity, assuming that “− ” is a kernel contraction operator determined by an incision function “σ”.

De�nition 6 (Internal (External) Kernel Revision [10]) Let “− ” be a kernel contraction for a set
K. Then the Internal Kernel Revision operator for K is de�ned as K ∓σ α = (K −∼α) + α. Anal-
ogously, an External Kernel Revision operator is de�ned as K ±σ α = (K + α)−∼α.

Finally, a kernel revision operator �∗� may be characterized by either an internal �∓σ� or an
external �±σ� kernel revision.



3.3 Non Prioritized Revisions
The classic revision operation is characterized by the postulates of rationality introduced by Gärden-
fors [8], some of them have been argued for being considered arbitraries. Particularly, the success
postulate (α ∈ K ∗ α) establishes that a new information to be revised in an epistemic state must
be part of it, despite that other beliefs in the agent's state must be eliminated in order to maintain its
consistency. For that purpose is interesting to de�ne new types of revision operations to �catch� the
information in a more intuitively way such that a new information has �no absolute priority� over
those in the epistemic state.

De�nition 7 (Explanation Set [5]) The set A is an explanation for α iff it means a minimal proof
for α, it is consistent and it is not self-explanatory, i.e., α 0 A.

Usually one does not totally accept what others inform but only what one considers to be relevant.
This property is known as partial acceptation, and its behavior may be modeled by a multiple revision
operator as follows:

De�nition 8 (Non-Prioritized Multiple Revision [5]) Let “σ” be an incision function, and let K
and A be two sets of sentences, such that K is consistent and A �nite. The Non-Prioritized Kernel
Revision by a Set of Sentences operator “¦N” is de�ned as follows:

K¦NA = (K ∪ A)\σ((K ∪ A)⊥⊥⊥)

4 Argument Revision Operators
Intuitively, a �Warrant-Prioritized Argument Revision Operator� (for short: WP Argument Revi-
sion Operator) revises a given program P = (Π, ∆) by an external argument 〈A, α〉. Moreover, this
argument ends up being warranted from the program resulting from the revision, provided that A∪Π
has a defeasible derivation for α. The set Π of strict rules and facts represents (in a way) the current
state of the world. The external argument 〈A, α〉 provides a set of defeasible rules that jointly with the
state of the world decides in favor of the conclusion α, i.e., it poses a reason to believe in it. Hence,
this argument does not stand by itself, but in conjunction with the strict part of the program it is being
added to, i.e., α is defeasibly derived from A ∪ Π.

Although it would be interesting to revise a program by 〈A, α〉 only when α is not already war-
ranted (by another argument), it might be desirable to have A as an undefeated argument. In our
approach, we take this last posture: the WP Argument Revision Operator will ensure A to be an
undefeated argument. In this way, α would be always warranted.

For this matter, a hypothetical dialectical tree rooted on 〈A, α〉 is built. The D-tree is deemed as
�hypothetical� due to 〈A, α〉 not belonging to P . Incisions over arguments in this tree are made in
order to turn A into an undefeated argument. Selections (consequently, incisions) must agree with
some minimal change principle. In this work, we propose a principle that attempts to ensure minimal
deletion of the DELP-program rules.

Finally, in the examples given throughout the article, we abstract away the argument compari-
son criterion: we will just give DELP-programs, pointing out which is the associated D-tree for the
argument being added, and thereafter the analysis begins.



4.1 WP Argument Revision � Minimal Change wrt. the DeLP-program
A WP Argument Revision Operator �∗ω

P� attempts to insert an argument 〈A, α〉 into a program P ,
in such a way that α turns out to be warranted from P ∗ω

P 〈A, α〉. Revising a program P = (Π, ∆)
by an argument 〈A, α〉 involves the generation of a hypothetical D-tree rooted in 〈A, α〉, namely
T ∗
P'(〈A, α〉), where P'= (Π, ∆ ∪ A). Therefore, since we want α to be warranted, those undefeated

defeaters for 〈A, α〉 will be cut off in order to turn 〈A, α〉 into an undefeated argument.

De�nition 9 (Argument Selection Function �γω
P�) Let T = T ∗

P'(〈A, α〉) be a D-tree and λi a di-
alectical line rooted in 〈A, α〉, then γω

P(λi) = B iff B is a defeater for 〈A, α〉 marked as undefeated
in T . From now on, the argument selected in the ith dialectical line will be called Ψi.

In general, selecting defeaters for the root argument ensures a minimal deletion of defeasible rules
from the DELP-program at issue. That is because the deletion of a root's defeater eliminates a whole
branch. Trying to achieve the same result by deleting rules from �lower� arguments would affect a
greater amount of arguments, due to the possibility of branching.

De�nition 10 (Argument Incision Function �σω
P�) Let Ψi be the �less relevant interference argu-

ment� determined by an argument selection function γω
P in the dialectical line λi. Then a function σω

P
is an argument incision function iff it veri�es ∅ ⊂ σω

P(Ψi) ⊆ Ψi.

Example 5 Let consider a program P5 = (Π5, ∆5), where:

Π5 =

{
t,
z

}
∆5 =

{ ∼a �≺y, y �≺x,∼a �≺z,
a �≺w, w �≺y,∼a �≺t

}

From P5 we can build the following arguments:

〈2,∼a〉: 〈{∼a �≺y,y �≺x,x �≺z},∼a〉
〈3,∼a〉: 〈{∼a �≺z},∼a〉
〈4, a〉: 〈{a �≺w,w �≺y,y �≺x}, a〉
〈5,∼a〉: 〈{∼a �≺t},∼a〉

Consider that P5 is revised by the argument 〈1, a〉: 〈{a �≺x,x �≺z}, a〉.
From now on, we abstract away both the argument preference criterion and
dialectical line acceptability, so we will provide the attacks between argu-
ments with no further discussion: arguments 2 and 3 attack 1, argument 4
attacks 3, and 5 attacks 4. Then, assume that the hypothetical D-tree on the
right is built from P ′

5 = (Π5, ∆5 ∪ 1). Here the argument selection function
γω
P selects the arguments 2 and 3 to be cut off, while the argument incision

function σω
P applied over them could be any subset.

1

2 3

4

5

To make an argument disappear, an incision over it must be performed. However, that incision
might have a collateral effect and make another argument/s from the tree disappear. That is, the rules
being cut off from an incised argument might belong to more arguments in the tree, and then the
impact on the tree structure would be greater.

De�nition 11 (Collateral Incision) Let σω
P(Ψ) be an incision and B be any argument in the tree. If

σω
P(Ψ) ∩ B 6= ∅ holds, then σω

P(Ψ) ∩ B is called a collateral incision over B.



The argument incision function should be applied to the portion of the argument that does not
belong to the root argument, i.e., it should avoid any collateral incision over the root argument.
The motivation of this property is that if a rule belonging to the root argument were to be cut off,
this argument would no longer hold, turning impossible to warrant its conclusion. Therefore, the
following property is proposed for an argument incision function �σω

P�:

(Root-Preservation) σω
P(Ψi) ∩ A = ∅, where γω

P(λi) = Ψi

Example 6 Let us consider program P ′
5 from Ex. 5. Here, the incision over argument 2 could be any

subset that does not contain the defeasible rule x �≺z (which belongs to the root argument 1), that
is, any subset of {∼a �≺y, y �≺x}. For instance, σω

P(2) = {∼a �≺y}. The incision over argument 3,
however, must be the single rule it contains: σω

P(3) = {∼a �≺z}. Therefore we have that σω
P satis�es

root-preservation.

Remark 1 Since arguments are minimal, given an argument 〈B, β〉, it is clear that there is no defea-
sible derivation for β from Π ∪ (B \ σω

P(B)).

When a collateral incision arises, some side effects may occur compromising the objective of the
revision (i.e., the root argument might end up defeated). This may happen in case a collateral incision
affects a supporting argument in a dialectical line which originally had a defeated defeater (for the
root), thus yielding it undefeated. This situation is captured by the following remark.

Remark 2 The marking of a D-tree is considered dynamic, this is, it may change by a collateral
effect of the applied incisions. Thereafter, if the status of a dialectical line has changed (now having
an undefeated defeater for the root), then it should be further affected by an incision function.

De�nition 12 (Root-Preserving Argument Incision Function) An argument incision function �σω
P�

determined by an argument selection function �γω
P� is called root-preserving argument incision

function if it veri�es root-preservation.

Now that both the selection and the incision function are de�ned, the WP Argument Revision
operation can be formally de�ned.

De�nition 13 (WP Argument Revision ) Let P be a program such that P = (Π, ∆). A revision
operation of P by an argument 〈A, α〉, namely P ∗ω

P 〈A, α〉, is de�ned by means of a root-preserving
argument incision function �σω

P� as follows:

P ∗ω
P 〈A, α〉 = (Π,A ∪∆ \⋃

i(σ
ω
P(Ψi)))

Theorem 1 Let PR = P ∗ω
P 〈A, α〉be a revised defeasible logic program by an argument 〈A, α〉, then

α is warranted from PR.

Example 7 From Ex. 6 we have the incisions σω
P(2) = {∼a �≺y} and σω

P(3) = {∼a �≺z}. Then,
from the revision P5 ∗ω

P 〈{a �≺x, x �≺z}, a〉 made in Ex. 5 we have:

P5R = (Π5, ∆5 ∪ {a �≺x, x �≺z} \ {∼a �≺y,∼a �≺z}) =({
t,
z

}
,

{
a �≺x, y �≺x, x �≺z,
a �≺w, w �≺y, ∼a �≺t

})

From P5R literal a is warranted, since the D-tree is just the root of the one depicted in Ex. 5.



4.2 WP Argument Revision Considering Extended Arguments
Revising a program (Π, ∆) by an argument 〈A, α〉 assuming that A ∪ Π derives α might be too
restrictive. Then, from the operator explained in the last section, we can consider a variation of it
that revises a program by an extended argument. These arguments will contain strict rules and facts,
besides defeasible rules. This characteristic gives them the possibility of being self-contained, in the
sense that they derive a conclusion just by themselves. However, extended arguments bring about
a main drawback: consistency checking, i.e., when a program is revised by an extended argument,
the join of their sets of strict rules must be non-contradictory. Thereafter, this join can be de�ned
following several policies, i.e., deleting rules in contradiction, turn them into defeasible rules, etc.
Moreover, this policy can be applied either over the strict rules of the program, over the strict rules of
the argument, or both. Since we are de�ning a prioritized argument revision operator, we are going
to keep the �rst option: only strict rules of the program will be affected. Next, we formally de�ne the
notion of extended argument.

De�nition 14 (Extended Argument) Given a Π set of strict rules and a set ∆ of defeasible rules,
a pair 〈(Π, ∆), α〉 is an extended argument structure for a literal α, if there is a minimal defeasible
derivation for α from Π ∪∆, and Π ∪∆ is non-contradictory.

Every concept from the DELP theory (such as (marked) dialectical trees) can be translated by
replacing the classical notion of argument. A rede�nition of these concepts is not to be done in this
article, due to space reasons and because they are very similar to the original ones.

An extended-argument revision operation is noted as P ~ω
P 〈(Π′, ∆′), α〉, where P = (Π, ∆).

Then, we should consistently join both strict sets Π and Π′, by means of a prioritized multiple revision
operator, namely �¦P�, consequently de�ned as:

De�nition 15 (Prioritized Multiple Revision) Let “σ” be an incision function (Def. 4), K and A be
two sets of sentences, such that K is consistent and A �nite, and let K⊥⊥β be the set of β-kernels
(Def. 3), such that A ` ∼β. The Prioritized Kernel Revision by a Set of Sentences operator “¦P” is
de�ned as follows:

K¦PA = (K\σ(K⊥⊥β)) ∪ A

Note that the de�nition of �¦P� is inspired by the theory proposed in [5] and mostly by the de�ni-
tion of its non-prioritized version �¦N �. The following properties are veri�ed.

Proposition 1 Given a multiple prioritized revision operation K¦PA, the following properties hold:
1. A ⊆ K¦PA

2. K 6⊆ K¦PA iff K ∪ A ` ⊥

Therefore, as part of the de�nition of a Warrant-Prioritized Extended-Argument Revision Oper-
ation P ~ω

P 〈(Π′, ∆′), α〉 (where P = (Π, ∆)), we should achieve the consistent joint of both strict
sets of rules Π and Π′, such that Π¦PΠ′. Afterwards, the sets of defeasible rules ∆ and ∆′ should
be joined. This may be easily achieved since there is no need to preserve consistence by a set of
defeasible rules, then a preliminary version might be just ∆ ∪ ∆′. But furthermore, in order to pre-
serve beliefs, a slight modi�cation is proposed by adopting the policy of �weakening� the erased
strict rules ρ, selected from Π by an incision function σ. Finally, while ρ ∈ σ(Π⊥⊥β) or equivalently
ρ ∈ Π\Π¦PΠ′, the referred �weakening� is performed by means of a function δ such that δ(ρ) is the
defeasible version of the strict rule ρ. This idea is originally exposed in [5], where a �rst approach



of revision in argumentative systems is given, and also in [14], where at one stage of the architecture
two DELP-programs have to be combined.

Supposing that the operator �~ω
P� would de�ne a new programPR = (Π¦PΠ′, ∆∪δ(Π\Π¦PΠ′)∪

∆′), it could not be possible to ensure that α is warranted from PR. Therefore, in order to achieve
warrant for α, we propose to de�ne the operator �~ω

P� by means of the operator �∗ω
P� previously

de�ned, as follows:

De�nition 16 (WP Extended-Argument Revision) A Warrant-Prioritized Extended-Argument Re-
vision Operator �~ω

P� is de�ned in terms of the operator �¦P� and the WP Argument Revision
operator �∗ω

P� as follows:

(Π, ∆) ~ω
P 〈(Π′, ∆′), α〉 = (Π¦PΠ′, ∆ ∪ δ(Π\Π¦PΠ′)) ∗ω

P 〈∆′, α〉

Example 8 Consider the extended argumentA = 〈({x← t, t}, {a �≺x}), a〉 and the DELP-program
P8 = ({∼x← w, w← z, z, y}, {∼a �≺y}). When joining A with P8, we have that there are strict
derivations for both x (from the strict part of A) and ∼x (from the strict part of P8). Therefore, we
apply the function δ to at least one strict rule from P8 that is involved in the derivation of ∼x; for
instance, δ(w← z) = w �≺z. Now we have:

P8 ~ω
P A = ({∼x← w, z, y, x← t, t}, {∼a �≺y, w �≺z}) ∗ω

P 〈{a �≺x}, a〉

From this DELP-program we can build the following extended arguments and dialectical tree:

〈A, a〉 : 〈({x← t, t}, {a �≺x}), a〉
〈B,∼a〉 : 〈({y}, {∼a �≺y}),∼a〉
〈C,∼x〉 : 〈({∼x← w, z}, {w �≺z}),∼x〉

A

B C

Finally, as explained in the previous section, incisions over arguments B and C have to be made
in order to turn A into an undefeated argument.

Remark 3 Revising a program P by an extended argument 〈(Π′, ∅), α〉 is the case of an argument
that, once introduced into P , would have no argument against it (i.e., by de�nition, there would be
no arguments for ∼α), since α would have a strict derivation from Π′. Therefore, strict derivations
for ∼α are to be weakened into defeasible derivations that, although they have no effect as argu-
ments for ∼α, they can be a part of other derivations that should not be �broken�. This stresses the
importance of not deleting con�icting strict rules, which can have undesirable collateral effects.

5 Discussion, Conclusions & Future Work
In this work we have presented two different approaches for the WP Argument Revision operator: one
considering regular arguments, and another, considering extended arguments. Both operators have a
common theoretical basis, but the latter one has to resolve some extra issues.

The different versions of the argument revision operator for defeasible logic programs here pro-
posed are based by most of the previous operator's de�nition. While selections may be related to the
partial-meet contractions theory [2], incisions are inspired by kernels contractions [9]. Further-
more, the order established by a preference criterion on selections may be possibly related to safe
contractions originally exposed in [3], and later on related to kernel contractions in [10]. Indeed,



an argument is a kind of kernel or minimal proof for a given consequence. These concepts are more
deeply treated in [4], where the Kernel Revision by a Set of Sentences is proposed. Moreover, this
operator constitutes part of the inspiration for the argument revision operators here exposed.

Our de�nition of the �¦P� operator ensures that there is no inconsistent intermediate epistemic
state during the revision process. In [5], a non-prioritized revision operator over explanations �¦N �
is introduced, which does generate an inconsistent intermediate epistemic state when the revision is
performed. The latter operator justi�es the non-prioritization by the assertion that there is no reason to
accept new information blindly, discarding older beliefs without proper justi�cation. We agree with
this posture, but since we are de�ning an operator that has the objective of warranting the conclusion
of the newly inserted external argument, we have to give priority to newer information. Let suppose
the de�nition of a non-prioritized version of our operator by means of an operator �¦N �:

(Π, ∆) ~ω
P 〈(Π′, ∆′), α〉 = (Π¦NΠ′, ∆ ∪ δ((Π ∪ Π′)\(Π¦NΠ′)) ∗ω

P 〈∆′, α〉

Note that the matter of de-prioritizing the incorporation of new information seems to be attained
just to the join of the strict rules sets, while when we refer it as �warrant-prioritized�, a reference to
the priority of giving warrant to the new conclusion α is given. However, the de�nition of the non-
prioritized operator has a major �aw: it does not ensure the warrant of α. An example will clarify this
assertion:

Example 9 Consider the extended argument A = 〈(Π′
9, {}), a〉 = 〈({a← b, b}, {}), a〉 and the

DELP-program P9 = (Π9, {}) = ({∼a← c, c}, {}). Here, if we prefer some older information
over new one, we will have no argument for �a� from (Π9¦NΠ′

9, δ((Π9 ∪ Π′
9)\(Π9¦NΠ′

9))), no mat-
ter if the rule (a← b) is turned into a defeasible rule (see Remark 3). Not having an argument for
�a� makes impossible to have a warrant for it.

In general, the theory we are de�ning cannot be trivially related to the basic concepts of belief
revision. Regarding the basic postulates for a revision operator, as originally exposed in [2], a deep
analysis is required. For example, the success postulate (K ∗ α ` α) makes reference to a knowledge
base K, which in our case is a DELP-program P = (Π, ∆). For both of the argument revision
operators here proposed, success is de�ned analogously, where the consequence notion is the warrant
of the conclusion of the argument being added to P . This statement is veri�ed by Theorem 1. Another
interesting postulate to be analyzed is consistency, which states that the outcome of a revision K ∗ α
must be consistent if α is non-contradictory. In our proposal, this postulate is treated in a trivial
manner, since programs are revised by arguments, which are consistent by de�nition. Regarding
extended arguments, a join between the strict parts of the program and the argument is performed to
ensure consistency. DELP-programs are divided in two subsets of rules: Π and ∆, where only Π is
required to be consistent, which is not modi�ed by any of the argument revision operators we propose
(because arguments do not introduce strict rules). Finally, the consistency postulate always hold for
the two warrant-prioritized argument revision operators.

Besides exposing a complete list of the basic postulates and the respective axiomatic represen-
tations for each argument revision operator, future work also includes the de�nition of contrac-
tion/expansion of a DELP-program by an argument, and a detailed study towards the possibility
of duality between the operators of contraction/expansion and revision in argumentation systems.

Optimality is not a property pursued in this work, since there are some cases in which incisions
made in a lower level might compromise a smaller amount of program rules. Our major concern
here is to de�ne revision operators which just follow correctness regarding the objectives exposed
above. That is, the main objective of this article is to present a �rst approach for revising defeasible



logic programs by an argument. Other possibilities besides warrant-prioritized argument revision are
left unaddressed in this paper, as well as variations of the operators here de�ned. Some of these
options are interesting, whereas others are trivial; however, the whole range of possibilities cannot
be accounted on a single article. For instance, regarding the minimal change principle, at least two
options arise: (1) we might introduce the notion of epistemic importance in an argument level, and
thus would incise �rst those arguments that are less important wrt. the total epistemic order among
them; (2) provided that D-trees are an important tool to understand the interrelation among arguments
and their in�uence to the �nal answer, we might want to preserve the structure of the hypothetical
D-tree; hence, incisions would be performed in its lowest levels.

References
[1] DeLP web page: http://lidia.cs.uns.edu.ar/delp.

[2] C. Alchourrón, P. Gärdenfors, and D. Makinson. On the Logic of Theory Change: Partial Meet
Contraction and Revision Functions. The Journal of Symbolic Logic, 50:510�530, 1985.

[3] C. Alchourrón and D. Makinson. On the logic of theory change: Safe contraction. Studia
Logica, (44):405�422, 1985.

[4] M. Falappa. Teor�́a de Cambio de Creencias y sus Aplicaciones sobre Estados de Conocimiento.
Ph. D. Thesis, June 1999.

[5] M. Falappa, G. Kern-Isberner, and G. R. Simari. Explanations, Belief Revision and Defeasible
Reasoning. Arti�cial Intelligence Journal, 141(1-2):1�28, 2002.

[6] A. J. Garc�́a and G. R. Simari. Defeasible Logic Programming: An Argumentative Approach.
Theory and Practice of Logic Programming, 4(1):95�138, 2004.

[7] P. Gärdenfors. An Epistemic Approach to Conditionals. American Philosophical Quarterly,
18(3):203�211, 1981.

[8] P. Gärdenfors. Knowledge in Flux: Modelling the Dynamics of Epistemic States. The MIT
Press, Bradford Books, Cambridge, Massachusetts, 1988.

[9] S. O. Hansson. Kernel Contraction. The Journal of Symbolic Logic, 59:845�859, 1994.

[10] S. O. Hansson. A Textbook of Belief Dynamics: Theory Change and Database Updating.
Springer. 1999.

[11] I. Levi. Subjunctives, Dispositions, and Chances. Synt �hese, 34:423�455, 1977.

[12] V. Lifschitz. Foundations of Logic Programs. In G. Brewka, editor, Principles of Knowledge
Representation, pages 69�128. CSLI Pub., 1996.

[13] M. Moguillansky and M. Falappa. A Non-monotonic Description Logics Model for Merging
Terminologies. Revista Iberoamericana de Inteligencia Arti�cial (AEPIA), ISSN 1137-3601,
2007. at press.

[14] N. D. Rotstein, A. J. Garc�́a, and G. R. Simari. Reasoning From Desires to Intentions: A Di-
alectical Framework. 22nd. AAAI Conference on Arti�cial Intelligence (AAAI 2007), Vancouver,
British Columbia, Canadá, 2007. To appear.


