
Argument Theory Change Applied to Defeasible Logic Programming

Martı́n O. Moguillansky and Nicolás D. Rotstein and
Marcelo A. Falappa and Alejandro J. Garcı́a and Guillermo R. Simari

Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET)
Artificial Intelligence Research and Development Laboratory (LIDIA)

Department of Computer Science and Engineering
Universidad Nacional del Sur (UNS), Bahı́a Blanca, Argentina

{mom,ndr,maf,ajg,grs}@cs.uns.edu.ar

Abstract

In this article we work on certain aspects of the belief change
theory in order to make them suitable for argumentation sys-
tems. This approach is based on Defeasible Logic Program-
ming as the argumentation formalism from which we ground
the definitions. The objective of our proposal is to define an
argument revision operator that inserts a new argument into
a defeasible logic program in such a way that this argument
ends up undefeated after the revision, thus warranting its con-
clusion. In order to ensure this warrant, the defeasible logic
program has to be changed in concordance with a minimal
change principle. Finally, we present an algorithm that im-
plements the argument revision operation.

Introduction & Motivation
This work presents a first approach to introduce several con-
cepts of belief revision within the area of argumentation sys-
tems. We are particularly focused on the revision of a knowl-
edge base by an argument. To achieve this, we use Defeasi-
ble Logic Programming (DELP) (Garcı́a and Simari 2004)
as the knowledge representation language, thus, knowl-
edge bases will be represented as defeasible logic programs
(DELP-programs). The DELP formalism is briefly de-
scribed in the next section.

The main objective is to define an argument revision oper-
ator that ensures warrant of the conclusion of the (external)
argument being added to a defeasible logic program. When
we revise a program by an argument 〈A, α〉 (where A is an
argument for α), the program resulting from the revision will
be such that A is an undefeated argument and α is therefore
warranted. In that sense, this operator will be prioritized.
Thus, we refer to this operator as warrant-prioritized argu-
ment revision operator (WPA Revision Operator).

The main issue underlying warrant-prioritized argument
revision (addressed in the third section of this paper) lies in
the selection of arguments and the incisions that have to be
made over them. An argument selection criterion will deter-
mine which arguments should not be present in order to en-
sure the inserted argument is undefeated. Once this selection

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This work is partially supported by CONICET (PIP 5050),
Universidad Nacional del Sur and ANPCyT.

is made, incisions (in the form of deletion of rules) will make
those arguments “disappear”; but this process has to be done
carefully, following some minimal change principle. In the
fourth section, we present two examples of minimal change,
thus defining the way the warrant-prioritized revision oper-
ator behaves. A general algorithm for argument revision is
proposed in the closing part of this section. Finally, in the
last section, related work is discussed, future work is pro-
posed, and conclusions are drawn.

Elements of Defeasible Logic Programming
Defeasible Logic Programming (DELP) combines results of
Logic Programming and Defeasible Argumentation. The
system is fully implemented and is available online (LIDIA
2007), and a brief explanation of its theory is included be-
low. A DELP-program P is a set of facts, strict rules
and defeasible rules. Facts are ground literals represent-
ing atomic information or the negation of atomic infor-
mation using strong negation “∼”. Strict Rules represent
non-defeasible information noted as α← β1, . . . , βn, where
α is a ground literal and βi>0 is a set of ground literals.
Defeasible Rules represent tentative information noted as
α –≺β1, . . . , βn, where α is a ground literal and βi>0 is a
set of ground literals.

When required, P will be denoted (Π,Δ) distinguishing
the subset Π of facts and strict rules, and the subset Δ of
defeasible rules (see Ex. 1). From a program (Π,Δ), con-
tradictory literals could be derived. Nevertheless, the set Π
(which is used to represent non-defeasible information) must
possess certain internal coherence, that is, no pair of contra-
dictory literals can be derived from Π. Strong negation can
be used in the head of a rule, as well as in any literal in its
body. In DELP, literals can be derived from rules as in logic
programming, being a defeasible derivation one that uses, at
least, one defeasible rule.

Example 1 Consider the DELP-program P1 = (Π1,Δ1):

Π1=

{
t, z,

(p← t)

}
Δ1=

{
(∼a –≺y), (y –≺x), (x –≺z),
(y –≺p), (a –≺w), (w –≺y),

(∼w –≺t), (∼x –≺t), (x –≺p)

}

From a program is possible to derive contradictory liter-
als, e.g., from (Π1,Δ1) of Ex. 1 it is possible to derive a
and∼a. DELP incorporates a defeasible argumentation for-
malism for the treatment of contradictory knowledge. This

formalism allows the identification of the pieces of knowl-
edge that are in contradiction, and a dialectical process is
used for deciding which information prevails as warranted.
This dialectical process (see below) involves the construc-
tion and evaluation of arguments that either support or inter-
fere with the query under analysis. In DELP, an argument
A is a minimal set of defeasible rules that, along with the
set of strict rules and facts, is not contradictory and derives
a certain conclusion α; this is noted as 〈A, α〉. As we will
explain next, arguments supporting the answer for a given
query are shown in a particular way using dialectical trees.

Example 2 FromP1 we can build the following arguments:
〈B1,∼a〉 = 〈{∼a –≺y,y –≺x,x –≺z},∼a〉
〈B2,∼a〉 = 〈{∼a –≺y,y –≺p},∼a〉
〈B3, a〉 = 〈{a –≺w,w –≺y,y –≺p}, a〉
〈B4,∼w〉 = 〈{∼w –≺t},∼w〉
〈B5,∼x〉 = 〈{∼x –≺t},∼x〉 〈B6, x〉 = 〈{x –≺p}, x〉

A literal α is warranted if there exists a non-defeated ar-
gument A supporting α. To establish if 〈A, α〉 is a non-
defeated argument, defeaters for 〈A, α〉 are considered, i.e.,
counter-arguments that by some criterion are preferred to
〈A, α〉. An argument A1 is a counter-argument for A2

iff A1 ∪ A2 ∪ Π is contradictory. In DELP, the compar-
ison criterion is usually generalized specificity (Stolzenburg
et al. 2003), but in the examples given in this paper we
will abstract away from this criterion, since it introduces un-
necessary complexity. Thus, the defeat relations between
counter-arguments will be given explicitly by enumerating
which argument defeats which other one. Since defeaters
are arguments, there may exist defeaters for them, and de-
featers for these defeaters, and so on. Thus, a sequence of
arguments called argumentation line is constructed, where
each argument defeats its predecessor. To avoid undesirable
sequences, that may represent circular or fallacious argu-
mentation lines, in DELP an argumentation line has to be
acceptable, that is, it has to be finite, an argument cannot
appear twice, and supporting (resp., interfering) arguments
have to be non-contradictory. From now on every argumen-
tation line will be assumed acceptable.

Example 3 Consider the arguments from Ex. 2. For sim-
plicity, we will provide the following defeat relation: B3 de-
feats B2, and B4 defeats B3. From these three arguments we
can build the sequence [B2,B3,B4], which is an acceptable
argumentation line.

Clearly, there might be more than one defeater for a par-
ticular argument. Therefore, many acceptable argumenta-
tion lines could arise from one argument, leading to a tree
structure. This tree is called dialectical because it represents
an exhaustive dialectical analysis for the argument in its root.
In a dialectical tree, every node (except the root) represents a
defeater of its parent, and leaves correspond to non-defeated
arguments. Each path from the root to a leaf corresponds to
a different acceptable argumentation line. A dialectical tree
provides a structure for considering all the possible accept-
able argumentation lines that can be generated for deciding
whether an argument is defeated.

Given a literal α and an argument 〈A, α〉 from a program
P , to decide whether α is warranted, every node in the tree is

recursively marked as “D” (defeated) or “U” (undefeated),
obtaining a marked dialectical tree TP (A): (1) all leaves in
TP (A) are marked as “U”s; and (2) let B be an inner node
of TP (A), then B will be marked as “U” iff every child of
B is marked as “D”. Thus, the node B will be marked as
“D” iff it has at least one child marked as “U”.

Given an argument 〈A, α〉 obtained from P , if the root
of TP (A) is marked as “U”, then we say that TP (A) war-
rants α and that α is warranted from P . When no confusion
arises, we will refer to A instead of α, saying that A is war-
ranted. In this paper, an argument is depicted as a triangle;
gray triangles will be undefeated arguments, whereas white
triangles will depict defeated arguments. Therefore, marked
dialectical trees will be represented as a tree of triangles,
where edges denote the defeat relation. In the rest of the
article we refer to marked dialectical trees just as “trees”.

Example 4
From the DELP-program (Π1,Δ1) of

Ex. 1 we can consider a new program
P4 = (Π1,Δ1 ∪ {a –≺x}), from which
we can build the additional argument
〈A, a〉 = 〈{(a –≺x), (x –≺z)}, a〉. The
defeat relations are: B1, B2 and B5 defeat
A, B3 defeats B2, B4 defeats B3, and B6

defeats B5. The tree TP4
(A) depicted on

the right is the tree for A from P4.

A

B1 B2

B3

B5

B6

B4

U U

UD

D

D

U

For simplicity, those arguments that can be built from P4

but do not appear in the tree TP4
(A) are assumed to be de-

feated by the corresponding arguments that do appear. For
instance, there is an argument 〈{∼a –≺y,y –≺x,x –≺p},∼a〉
that we assume is defeated by A and B3.

An Argument Revision Operator
Intuitively, a Warrant-Prioritized Argument Revision Opera-
tor (for short: WPA Revision Operator) revises a given pro-
gram P = (Π,Δ) by an external argument 〈A, α〉 ensuring
A ends up being warranted from the program resulting from
the revision –provided thatA∪Π has a defeasible derivation
for α. This condition for deriving α relies on the fact that the
set Π of strict rules and facts represents (in a way) the cur-
rent state of the world. The argument 〈A, α〉 provides a set
of defeasible rules that, jointly with the state of the world,
decides in favor of the conclusion α, i.e., it poses a reason to
believe in it. Hence, this argument does not stand by itself,
but in conjunction with the strict part of the program it is
being added to, i.e., A ∪Π defeasibly derives α.

Although it would be interesting to revise a program by
〈A, α〉 only when α is not already warranted (by another
argument), it might be desirable to have A as an undefeated
argument. In our approach, we take this last posture: to
ensure A to be an undefeated argument, and thus, α would
be always warranted (at least because of A).

For this matter, a hypothetical dialectical tree rooted on
〈A, α〉 from program P ′ = (Π,Δ ∪ A) is built. The tree is
deemed as “hypothetical” because it does not belong to the
original program P and (possibly) neither to the program
PR resulting from the revision. That is, it belongs to the
program P ′, which represents an intermediate state. This

state is not final and consequently the tree is hypothetical,
since it would suffer some modifications in order to warrant
α. Finally, since the tree is modified through incisions over
interference arguments we need to be able to identify them.

Definition 1 (Set of Interference (Supporting) Arguments)
Let λ = [B1,B2, . . . ,Bn] be an argumentation line, then
the set of interference (resp., supporting) arguments λ−
(resp., λ+) of λ is the set containing all the arguments
placed on even (resp., odd) positions in λ.

Remark 1 Just for simplicity, from now on we use B+
i to

mean that B ∈ λ+
i , and similarly B−i wrt. B ∈ λ−

i .

Once an argument of a line λ is incised (i.e., it disappears),
it is necessary to identify the part of λ that remains as a part
of the tree, either within another line or as a separate line.

Definition 2 (Upper Segment) Let λ be the argumentation
line [B1, . . . ,Bj , . . . ,Bn] . The upper segment of λ wrt. Bj

is λ↑(Bj) = [B1, . . . ,Bj−1], and λ↑(B1) does not exist.

In a dialectical tree, we need to characterize the kind of
argumentation lines that actually affect the “defeated” status
of the root argument. Next, we define the notion of attacking
lines, which are the lines in a tree over which the argument
selection and then the argument incision are going to be ap-
plied. Intuitively, the set of attacking lines is the minimal
subset of lines from a tree such that, without them, the tree
would warrant its root argument (see Lemma 1).

The marking of an argumentation line will not be consid-
ered individually, but in concordance with the context pro-
vided by the tree it belongs to. For instance, in Ex. 4 the line
[A,B5,B6] does not have the marking sequence UDU but
the marking DDU , since B1 (from line [A,B1]) is an unde-
feated defeater forA, which is therefore defeated (marked as
D). In general, the marking sequence of any argumentation
line can be associated to a regular expression.

Definition 3 (Attacking lines) Let λ be an argumentation
line. We call λ an attacking line iff its marking sequence
corresponds to the regular expression (DU)+.

Example 5 From the tree of Ex. 4 we have two attacking
lines: [A,B1] and [A,B2,B3,B4]. Note that a possible tree
TP ′

4
(A) containing just the line [A,B5,B6] would warrant

A, since its marking sequence is UDU . The addition of any
attacking line to TP ′

4
(A) implies A to be defeated.

The argument theory change proposed here follows a min-
imal change principle. In this sense, a particular change op-
eration could avoid the complete erasure of attacking lines,
and a portion of them could still appear in the resulting tree.

Definition 4 (Types of Argumentation Lines) There are
two types of argumentation lines regarding their marking:

1. Warranting Lines: U(D+U)∗

2. Non-warranting Lines: (D+U)+

The notation W lines identifies the warranting lines in gen-
eral; whereas the non-warranting are subdivided in attack-
ing lines ((DU)+) and D-rep lines (those that have a repe-
tition of Ds in at least one place in the sequence).

Some W lines also have a repetition of Ds in their se-
quence, but we do not distinguish this kind of lines because
they do not require a separate analysis –they do not threat the
warrant of the root argument. Despite being non-warranting,
D-rep lines are not “responsible” for the mark D of the root
argument: it is such due to the D-rep lines sharing their be-
ginning with an attacking line.

Proposition 1 1 If λD is a D-rep line, then there exist an
associated attacking line λA and two arguments BD ∈ λD,
BA ∈ λA such that λ↑

D(BD) = λ↑
A(BA).

Given a tree, for every attacking line λ, an interference
argument is selected over λ− on behalf of an argument se-
lection criterion “≺γ” by the use of an argument selection
function, namely γω .

Definition 5 (Argument Selection Criterion “≺γ”) Let Γ
be a set of arguments, “≺γ” is an argument selection crite-
rion iff Γ is a totally ordered set wrt. the operator “≺γ”.

In order to warrant the argument in the root of the hypo-
thetical tree, we need an argument selection function that re-
turns which argument should be “erased” from a given line.
This should not be performed randomly, but following some
policy, namely the minimal change principle. Therefore, the
deletion of the selected argument will conform this princi-
ple, ensuring a minimal “amount” of change is provoked.

The argument selection function is tied to the argument
selection criterion “≺γ”, that in turn is guided by the min-
imal change principle, which organizes a set of arguments
according to the order “≺γ”. This set comes from an attack-
ing line, over which we select an argument to put away.

Definition 6 (Argument Selection Function “γω”) An ar-
gument selection function “γω” is applied over every at-
tacking line λi. Therefore, a selection γω(λi) = B−i is de-
termined by the selection criterion “≺γ” and it is called Ψi.

Proposition 2 The upper segment of a selected argument in
an attacking line is a non-attacking line.
Proof sketch: An attacking line λ = [A1, . . . ,Aj , . . . ,An]
has a marking sequence (DU)+. Assuming that Aj ∈ λ−

is selected, if its upper segment λ↑(Aj) = [A1, . . . ,Aj−1]
were an acceptable argumentation line (after the incision of
Aj), then λ↑(Aj) would be either a W line or a D-rep line.
Thus, none of them is an attacking line.

After an argument is selected, it is desirable that the sub-
sequent incision over this argument does not affect other ar-
guments in the tree. For this matter, the following property
is proposed for an argument selection function:

(Cautiousness) γω(λi) \
⋃
B 	= ∅, for every

B ∈ TP (A),B 	= γω(λi)

Here, two possibilities arise: either the whole selected in-
terference argument or just a portion of it does not “collide”
with any supporting argument of the tree.

Definition 7 (Cautious and Non-Cautious Selections)
Given an argument selection function γω and an argu-
mentation line λ, then γω(λ) is identified as a cautious

1Some proofs in this article were omitted due to space reasons.

selection Ψ iff γω verifies cautiousness. Otherwise, γω(λ)
is identified as a non-cautious selection Ψ.

Example 6 From the tree of Ex. 4, it can be seen that the
only selection in the attacking line [A,B1] is B1, whereas
for the attacking line [A,B2,B3,B4], the selection function
could return either B2 or B4. Regarding the selection of B4,
it satisfies cautiousness because it has no intersection with
any other argument. In contrast, the selection of B2 would
be non-cautious, since its two rules ∼a –≺y and y –≺p be-
long to B1 and B3, respectively. Finally, considering B1 in
the other attacking line, we have that B1 ∩ A = {x –≺z}
and B1 ∩ B2 = {∼a –≺y}. However, the remaining portion
of B1 is non-empty, that is B1 \

⋃
(A,B2,B3,B4,B5,B6) =

{y –≺x}; hence, the selection of B1 verifies cautiousness.

After the argument selection, an argument incision func-
tion σω is applied to the selected argument Ψi, identifying
the non-empty set of cut-off defeasible beliefs. Once the
cut over an interference argument is made, the attacking line
it belonged to turns into a non-attacking line (see Proposi-
tion 2). Analogously to the case of the selection function
and the need of a selection criterion, we define an incision
criterion to guide the incision function, which should be also
related to the minimal change principle.

Definition 8 (Argument Incision Criterion “≺σ”) Let Γ
be a set of defeasible rules, “≺σ” is an incision selection
criterion iff Γ is a totally ordered set wrt. the operator
“≺σ”.

Definition 9 (Argument Incision Function “σω”) Let Ψ
be an argument determined by the selection function “γω”.
Then a function “σω” is an argument incision function
iff it is determined by the incision criterion “≺σ” and
verifies ∅ ⊂ σω(Ψ) ⊆ Ψ.

Remark 2 Since arguments are minimal, given an argu-
ment 〈B, β〉 it is clear that there is no defeasible derivation
for β from (B \ σω(B)) ∪Π.

To make an argument disappear, an incision over it must
be applied. However, that incision might have a collateral
effect and make another argument/s from the tree also disap-
pear. We call this effect collateral incision. When this oc-
curs over more than one argument in the same line, we will
be interested in the uppermost one, since its disappearance
will make the lower ones also disappear.

Definition 10 (Collateral Incision) Let σω(Ψ) be an inci-
sion and B ∈ λ, an argument. A collateral incision over B
is defined as σω(Ψ) ∩ B 	= ∅. If σω(Ψ) ∩ C = ∅ for every
C ∈ λ↑(B), we have that σω(Ψ)(B) = σω(Ψ) ∩ B is the
uppermost collateral incision over λ.

In what follows, we provide some tools to handle collat-
eral incisions by proposing some properties for an incision
function “σω”. The following section works on this topic by
describing a way to take advantage of these properties.

(Strict-Preservation) σω(Ψ)(B) = ∅,
for any B in any λ in TP (A)

Although strict-preservation might be a desirable prop-
erty, it is not always possible to verify it. Thus, when a

collateral incision is unavoidable, some side effects may oc-
cur compromising the goal of the revision (i.e., the root ar-
gument might end up defeated). To avoid this, we have to
restrict the selection performed over the argumentation line
where the collateral incision arises: the collaterally incised
argument should not be in the upper segment of the argu-
ment selected, since the selection would have no effect.

(Preservation) If σω(Ψi)(Bj) 	= ∅ then
(exists λ↑

j (Bj)) and (Ψj ∈ λ↑
j (Bj) iff λ↑

j (Bj) is att. line),
for any Bj

This principle is illustrated in Fig. 1, in which the se-
lection is labeled with a minus symbol. When an incision
σω(Ψi) in the ith dialectical line (the left branch in Fig. 1)
results in an (uppermost) collateral incision σω(Ψi)(Bj) over
argument Bj in the jth dialectical line (right branch), it
must be ensured that the selection Ψj

in the jth line is performed over the
upper segment λ↑

j (Bj). This selection
is only performed if λ↑

j (Bj) is an at-
tacking line. Finally, note that if Bj

were the root node, then there would
be no upper segment for it. In the
case of the antecedent of the princi-
ple being false; that is, when there is
no collateral incision over any argu-
ment Bj in any jth line, the validity of
the preservation principle is not threat-
ened. Note that this particular case
subsumes strict-preservation.

λi

λj

A

Bj

Ψi

σ(Ψi)

σ(Ψi)
(Bj)

λj(Bj)

... ...
...

-

-

Figure 1 Preservation

The argument incision function should be applied to the
portion of the argument that does not belong to the root ar-
gument, i.e., it should avoid any collateral incision over the
root argument. The motivation of this property is clear: if
a rule belonging to the root argument were to be cut off,
this argument would no longer hold, turning impossible to
warrant its conclusion. Therefore, the following property is
proposed for an incision function “σω”:

(Root-Preservation) σω(Ψ)(A) = ∅
Root-preservation is a particular case of strict-

preservation, where the argument Bj is the root argument
A. Regarding preservation, a collateral incision over A
would not be possible, since λ↑(A) does not exist, and the
consequent of this principle would be false, which means
that the antecedent should also be false in order for the prin-
ciple to hold. This is so when root-preservation is satisfied.
The interrelation among the three preservation principles is
shown by the following proposition.

Proposition 3 If “σω” verifies strict-preservation then it
also verifies root-preservation (strict-preservation implies
root-preservation). Similarly, preservation implies root-
preservation and strict-preservation implies preservation.

Remark 3 Collateral incisions may occur in the same ar-
gumentation line than the incision σω(Ψ), but they cannot
occur in the upper segment of the selected argument Ψ, since
that would not verify preservation.

Proposition 4 A selection Ψ is cautious iff there exists an
incision σω(Ψ) verifying strict-preservation.

Definition 11 (Warranting Incision Function) An argu-
ment incision function “σω” verifying preservation is said
to be a warranting incision function.

Finally, the WPA Revision is formally defined as:

Definition 12 (WPA Revision) Let P = (Π,Δ) be a
DELP-program. A revision operator of P by an argument
〈A, α〉, namely P ∗ω 〈A, α〉, is defined by means of a war-
ranting incision function “σω” as follows:

P ∗ω 〈A, α〉 = (Π,A ∪Δ \
⋃

i(σ
ω(Ψi)))

Lemma 1 A dialectical tree containing no attacking lines
has its root marked as undefeated.
Proof sketch: A restatement of this lemma is: if the tree con-
tains no attacking lines, then it only contains W lines. The
tree cannot contain non-warranting lines because they are
either attacking or D-rep. The former violates the hypothe-
sis, and the latter cannot exist without an associated attack-
ing line, as stated by Proposition 1.

Theorem 1 Let P be a DELP-program, “ ∗ω ”, a WPA Re-
vision Operator, and 〈A, α〉, an argument. Then α is war-
ranted from P ∗ω 〈A, α〉.
Proof sketch: For each attacking line in the hypothetical tree
rooted in 〈A, α〉, the selection gives an interference argu-
ment, the incision there makes that argument disappear, and
the remaining upper segment (by Proposition 2) is a non-
attacking line. Therefore, the tree no longer contains attack-
ing lines and (by Lemma 1) it warrants α.

Two Minimal Change Principles
In this section we propose two minimal change principles:
preserving program rules and preserving the hypothetical
tree structure. The definition of a new minimal change prin-
ciple depends on the explicit definition of the criteria for
selections “≺γ” and incisions “≺σ”. Therefore, for each
principle we are going to define the corresponding selection
criterion. The incision criterion “≺σ” will be common to
both principles, and would assume, for instance, some kind
of epistemic entrenchment over rules of each argument. Fi-
nally, one restriction over the relation of selections and inci-
sions will be considered for each proposed criterion. These
restrictions use the tools provided, like cautiousness and the
three preservation principles.

(1) Preserving Program Rules. In general, selecting di-
rectly some defeaters for the root argument ensures a min-
imal deletion of defeasible rules from the DELP-program.
This is so because the deletion of a root’s defeater elimi-
nates a whole branch. Trying to achieve the same result by
deleting rules from “lower” arguments in the tree would af-
fect a greater amount of arguments, due to the possibility of
branching. In order for the root argument to be warranted, its
defeaters have to be defeated. Therefore, we need to make
incisions over those defeaters that are undefeated, i.e., those
that belong to attacking lines.

Rules-Preserving Selection Criterion. Given an attack-
ing line λ = [A,B2, . . . ,Bn], let Γ = λ− =

⋃
k{Bk},

with k even, we have that Bi ≺γ Bj , for i < j.

An interesting restriction regarding incisions is to seek
for those that have a collateral incision with a selection in
another line. Such an incision is desirable, since it would
not only save a future incision, but would also prevent the
deletion of extra rules.

(2) Preserving Tree Structure. When trees are treated
as an explanation for the DELP-answer given to a query
(Garcı́a et al. 2007; Garcı́a, Rotstein, and Simari 2007), they
are of upmost importance, since their structure is the main
source of information. Provided that trees are an important
tool to understand the interrelation among arguments and
their influence to the final answer (and its trust), we will de-
fine a selection criterion that determines a revision operation
making minimal changes in the structure of the hypothetical
tree in order to render its root undefeated. Therefore, the
selection criterion will be determined by the level of the ar-
gument in the argumentation line; the lower an argument is,
the less is its impact in the structure of the tree, making the
argument more suitable for selection. Hence, this criterion
specifies the opposite order than the rules-preserving one,
i.e., “Given an attacking line [...] Bi ≺γ Bj , for i > j.”

In this case, an interesting restriction is to identify those
strict-preserving incisions, that is, incisions that do not col-
lide with any other argument in the tree. This would collab-
orate with the preservation of the tree structure.

Example 7 Consider the program P1 being revised by the
argument A and the corresponding hypothetical tree of
Ex. 4. The criterion dedicated to preserve program rules
would select arguments B1 and B2. From Ex. 6 we know
that there is a way of incising B1 while collaterally incising
B2, which is σω(B1) = {∼a –≺y}. Therefore, the rules-
preserving revised program would lose just one rule:

P1
R = (Π1,Δ1 ∪ {A} \ {∼a –≺y})

Following the tree-preserving minimal change principle,
lower selections are considered first, thus the selected ar-
guments are B1 and B4. Now the incision over
B1 will avoid collateral incisions, i.e., will be
strict-preserving; hence, σω(B1) = {y –≺x}.
Since B4 is a cautious selection (see Ex. 6)
and has one rule, the only possible incision is:
σω(B4) = {∼w –≺t}. Finally, the resulting tree

A

B5

B6
U

D

U

B2

B3

D

U

is depicted on the right and its corresponding program is:

P2
R = (Π1,Δ1 ∪ {A} \ {(y –≺x), (∼w –≺t)})

An Algorithm for the Revision. The PROLOG-like Al-
gorithm 1 for the argument revision considers a possible im-
plementation of this operation2. Predicate revise/3 takes
a program and an argument, performs the revision, and re-
turns the revised program. In order to gather all the incisions
performed over attacking lines, predicate get incisions/1
performs the computation of these incisions over each at-
tacking line through predicate do incision/1, attempting to
incise the best selection wrt. the adopted selection criterion.
A sequence of facts select/2 ordered according to this cri-
terion implements the selection function. If the best selec-
tion does not imply the best incision (according to the corre-

2Note that all the symbols are variables, i.e., there are no atoms.

sponding predicate restrictions/2), a “second best” selec-
tion is considered by backtracking, and so on until the best
combination of selection/incision is found. In case this does
not happen, the “first best” selection is reconsidered, with
no regard about the quality of the incision. If no restriction
is verified, the incision is only guided by preservation and,
as stated above, the best selection is reconsidered.

Algorithm 1 Argument Revision
revise((Π, Δ), 〈A, α〉, (Π, ΔR))←

union(Δ,A, ΔA),
assert att lines((Π, ΔA)), %facts attacking/1

assert lines((Π, ΔA)), %facts line/1

get incisions(Σ), subtract(ΔA, Σ, ΔR).

get incisions(Σ)←
findall(σ, do incision(σ), Σ).

do incision(σ)←
retract(attacking(λ)),
(select(Ψ, λ), restrictions(Ψ, σ), !
;
select(Ψ, λ), incise(σ, Ψ)).

—————————————————————————
(1) restrictions(Ψi, σ)← %preserving program rules

attacking(λj), select(Ψj , λj), incise(σ, Ψi),
intersect(σ, Ψj), retract(attacking(λj)).

—————————————————————————
(2) restrictions(Ψi, σ)← %preserving tree structure

incise(σ, Ψi),
not((line(λj), member(B, λj), intersect(σ,B))).

Discussion, Conclusions & Future Work
The main objective of this article was to present a first ap-
proach to revise defeasible logic programs by an argument.
An Argument Revision Operator was thus proposed, along
with two minimal change principles: preservation of pro-
gram rules and tree structure. Both principles throw different
results when applied to the same program (see Ex. 7). Ad-
ditional rationality principles and change operators are left
unaddressed in this paper. For instance, regarding minimal
change, a different approach would attempt to preserve the
semantics of the program (i.e., the set of warranted literals).

The WPA Revision Operator here proposed may be com-
pared to some operations in the theory change. While selec-
tions in WPA Revision may be related to selections in the
partial-meet contractions theory (Alchourrón, Gärdenfors,
and Makinson 1985), incisions are inspired by kernels con-
tractions (Hansson 1994). Furthermore, the order estab-
lished by a preference criterion on selections may be possi-
bly related to safe contractions as originally exposed in (Al-
chourrón and Makinson 1985), and later on related to kernel
contractions in (Hansson 1999). Indeed, an argument is a
kind of kernel or minimal proof for a given consequence.
These concepts are more deeply treated in (Falappa, Kern-
Isberner, and Simari 2002), where the kernel revision by a
set of sentences is proposed. Moreover, this operator consti-
tutes part of the inspiration for the argument revision opera-
tor.

However, the theory we are defining cannot be trivially
related to the basic concepts of belief revision. Regarding
the basic postulates for a revision operator, as originally ex-
posed in (Alchourrón, Gärdenfors, and Makinson 1985), a
more detailed analysis is required. For example, the success
postulate (K ∗ α � α) makes reference to a knowledge base
K, which in our case is a DELP-program P = (Π,Δ), and
the sentence α is generalized to a set of defeasible rules (i.e.,
an argument). Thus, success can be defined analogously,
where the notion of consequence is warrant. This statement
is verified by Theorem 1. Another interesting postulate to be
analyzed is consistency, which states that the outcome of a
revision K ∗ α must be consistent if α is non-contradictory.
In our proposal, this postulate is treated in a trivial manner,
since programs are revised by arguments, which are consis-
tent by definition, and the only subset of a DELP-program
that is required to be consistent (i.e., Π) is not modified by
the argument revision. Finally, consistency would always
hold for the WPA Revision Operator.

Future work includes a proposal of a set of rationality
principles suggesting a set of basic postulates, along with
their respective analysis and an axiomatic representation for
the WPA Revision Operator. Besides, ongoing work com-
prehends the definition of new change operators, such as
contraction/expansion of a DELP-program by an argument,
followed by a detailed study towards duality between con-
traction/expansion and revision in argumentation systems.

References
Alchourrón, C., and Makinson, D. 1985. On the Logic
of Theory Change: Safe Contraction. Studia Logica
(44):405–422.
Alchourrón, C.; Gärdenfors, P.; and Makinson, D. 1985.
On the Logic of Theory Change: Partial Meet Contraction
and Revision Functions. The Journal of Symbolic Logic
50:510–530.
Falappa, M.; Kern-Isberner, G.; and Simari, G. R. 2002.
Explanations, Belief Revision and Defeasible Reasoning.
Artificial Intelligence Journal 141(1-2):1–28.
Garcı́a, A. J., and Simari, G. R. 2004. Defeasible Logic
Programming: An Argumentative Approach. Theory and
Practice of Logic Programming 4(1):95–138.
Garcı́a, A.; Chesñevar, C.; Rotstein, N.; and Simari, G.
2007. An Abstract Presentation of Dialectical Explanations
in Defeasible Argumentation. In ArgNMR’07, 17–32.
Garcı́a, A.; Rotstein, N.; and Simari, G. 2007. Dialec-
tical Explanations in Defeasible Argumentation. In EC-
SQARU’07, 295–307.
Hansson, S. O. 1994. Kernel Contraction. Journal of Sym-
bolic Logic 59:845–859.
Hansson, S. O. 1999. A Textbook of Belief Dynamics:
Theory Change and Database Updating. Springer.
LIDIA. 2007. DeLP Web Client and Visualization Tool.
http://lidia.cs.uns.edu.ar/delp client.
Stolzenburg, F.; Garcı́a, A.; Chesñevar, C. I.; and Simari,
G. R. 2003. Computing Generalized Specificity. Journal
of Non-Classical Logics 13(1):87–113.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

