
Argument Theory Change Through
Defeater Activation

Martín O. MOGUILLANSKY, Nicolás D. ROTSTEIN1,
Marcelo A. FALAPPA, Alejandro J. GARCÍA and Guillermo R. SIMARI

National Research Council (CONICET), AI R&D Lab (LIDIA)
Department of Computer Science and Engineering (DCIC)

Universidad Nacional del Sur (UNS), Argentina
e-mail: nico.rotstein@abdn.ac.uk, {mom, maf, ajg, grs}@cs.uns.edu.ar

Abstract. Argument Theory Change (ATC) applies classic belief change concepts
to the area of argumentation. This intersection of fields takes advantage of the def-
inition of a Dynamic Abstract Argumentation Framework, in which an argument
is either active or inactive, and only in the former case it is taken into considera-
tion in the reasoning process. ATC identifies how the framework has to be modi-
fied in order to achieve warrant for a certain argument. The present article copes
with this matter by defining a revision operator based on activation of arguments,
i.e., recognizing the knowledge that is missing.

1. Introduction and Background

This article presents a new approach to Argument Theory Change (ATC) [9,11], where
belief change concepts [1,8] are translated to the field of argumentation. Here we use the
Dynamic Abstract Argumentation Framework (DAF) [12], which extends Dung’s frame-
work [6] in order to consider (1) subarguments (internal, necessary parts of an argument
that are arguments by themselves), and (2) a set of active arguments (those available
to perform reasoning). The main contribution provided by ATC is a revision operator
at argument level that revises a theory by an argument seeking for its warrant. That is,
an argument is activated (begins to be considered by the argumentation machinery) and
after its new status is analyzed, the revision theory proposes additional modifications to
the set of active arguments in order to finally warrant the argument. The arguments to be
activated will be defeaters of those somehow interfering with the warrant of the argument
at issue. However, since defeaters might be unavailable to be activated, the activating
revision is not always successful.

This article does not pursue a full formalization according to the classical theory
of belief revision. Thus, no representation theorems nor characterization postulates are
to be defined here. Instead, we look at the process of change from the argumentation
standpoint. However, the usual principles of change from belief revision were taken into
account, namely, minimal change and success.

1Employed by the University of Aberdeen (Scotland, UK) for dot.rural Digital Economy Research, under
the RCUK Digital Economy Programme, http://www.dotrural.ac.uk

http://www.dotrural.ac.uk


2. A Dynamic Abstract Framework

Arguments, in the usual sense, are interpreted as a reason for a certain claim from a set
of premises. In abstract argumentation [5,10], these features are abstracted away; hence
we will work with arguments as “black boxes of knowledge” which may be divided in
several smaller arguments, referred to as subarguments. In the dynamic framework used
here we assume a universal set of arguments holding every conceivable argument that
could be used by the inference machinery, from which a subset of active arguments can
be distinguished. These arguments represent the current state of the world and are the
only ones to be considered to compute warrant. Activation and deactivation of arguments
are thus assumed to be determined from an external mechanism. In some domains, an
agent might have the capability of de/activating arguments, and therefore the challenge
is to decide what kind of change has to be performed, i.e., what to de/activate. This is
the point in which ATC enters the scene, allowing to handle de/activation of arguments
in a proper manner, seeking for a concrete objective. These changes are performed at a
theoretical level, i.e., any inactive argument could be eventually activated.

Definition 1 (DAF) A dynamic abstract argumentation framework (DAF) is a tuple
〈U, ↪→,v〉[A], where U is a finite set of arguments called universal, A ⊆ U is called
the set of active arguments, ↪→ ⊆ U × U denotes the attack relation, and v ⊆ U × U
denotes the subargument relation.

The principle characterizing argument activation is:

(Activeness Propagation) B ∈ A iff B′ ∈ A for any B′vB.

In this article, we build and evaluate a dialectical tree rooted in the argument under
study in order to determine whether it is warranted. A dialectical tree is conformed by a
set of argumentation lines; each of which is a non-empty sequence λ of arguments from
a DAF, where each argument in λ attacks its predecessor in the line. The first argument
is called the root, and the last one, the leaf of λ. Different restrictions on the construction
of argumentation lines can be defined under the name of dialectical constraints (DC) [7].
DCs are useful to determine whether an argumentation line is finally acceptable. We
assume a DC to avoid constructing circular argumentation lines, keeping them finite.

We call dynamic argumentation theory (DAT) to a DAF closed under activeness
propagation and enriched with DCs. An operator Cap : P(U)→ P(U) is assumed to im-
plement the closure under activeness propagation required by a DAT T = 〈U, ↪→,v〉[A],
where A = Cap(A). To represent change over the set of active arguments we assume an
activation operator ⊕ : P(U) × P(U) → P(U) such that Ψ1⊕Ψ2 = Cap(Ψ1 ∪ Ψ2),
with (Ψ1 ∪ Ψ2) ⊆ U. The domain of all acceptable argumentation lines in a DAT T, is
noted as LinesUT, while LinesAT ⊆ LinesUT will be the domain enclosing every acceptable
line containing only active arguments. The root argument of a line λ from a DAT T will
be identified through the function root : LinesUT → U. From now on, given a DAT T, to
refer to an argumentA belonging to a line λ ∈ LinesAT, we will overload the membership
symbol and write “A ∈ λ”, and will refer to λ simply as argumentation line (or just line)
assuming it is acceptable. We identify the set of pro (resp, con) arguments containing all
arguments placed on odd (resp, even) positions in a line λ, noted as λ+ (resp, λ−).



Definition 2 (Upper Segment) Given a DAT T and a line λ ∈ LinesUT such that λ =
[B1, . . . ,Bn], the upper segment of λ wrt. Bi (1 ≤ i ≤ n) is defined as λ↑[Bi] =
[B1, . . . ,Bi]. The proper upper segment of λwrt.Bi (i 6= 1) is λ↑(Bi) = [B1, . . . ,Bi−1].

We refer to both proper and non-proper upper segments simply as “upper segment”
and either usage will be distinguishable through its notation (round or square brackets
respectively).

Definition 3 (Dialectical Tree) Given a DAT T, a dialectical tree TT(A) rooted in A is
built by a set X ⊆ LinesUT of lines rooted inA, such that an argument C in TT(A) is: (1)
a node iff C ∈ λ, for any λ ∈ X; (2) a child of a node B in TT(A) iff C ∈ λ, B ∈ λ′, for
any {λ, λ′} ⊆ X , and λ′↑[B] = λ↑(C). A leaf of any line in X is a leaf in TT(A).

However, the acceptability of a dialectical tree will depend on the set X of lines
used to build such tree. Hence, an acceptable dialectical tree will be constructed from
a bundle set ST(A) which –given a DAT T– contains all the acceptable and exhaustive
argumentation lines from LinesAT rooted in A. (We refer to a line as exhaustive when
no more arguments can be added to it.) Thus, following Def. 3, TT(A) is acceptable
if it is built from a set X = ST(A). The domain of all acceptable dialectical trees
from T is noted as TreesT. Besides, we will overload the membership symbol and write
“λ ∈ TT(A)” when the line λ belongs to the tree TT(A) ∈ TreesT.

Dialectical trees allow to determine whether the root node of the tree is warranted or
not. This evaluation will weigh all the information present in the tree through a marking
criterion to evaluate each argument in the tree –in particular the root– by assigning them
a mark within the domain {D,U}, where U (resp., D) denotes an undefeated (resp., de-
feated) argument. We will adopt a skeptical marking criterion: (1) all leaves are marked
U ; and (2) every inner node B is marked U iff every child of B is markedD, otherwise, B
is marked D. Finally, warrant is specified through a function Mark : TreesT → {D,U}
returning the mark of the root.

Definition 4 (Warrant) Given a DAT T, an active argument A ∈ A is warranted iff
Mark(TT(A)) = U . Whenever A is warranted, the dialectical tree TT(A) is called
warranting tree; otherwise, it is called non-warranting tree.

3. An Activating Approach to ATC

The core of the change machinery involves the alteration of some lines in such dialectical
tree when it happens to be non-warranting. Therefore, the objective of altering lines is
to change the topology of the tree containing them in order to turn it to warranting.
Alteration of lines comes from activation of arguments; that is, arguments cannot be
simply added to the tree. Since an argument could appear in different positions in several
lines in a tree, an alteration of a line could result in collateral alterations of other lines.
This may end up extending the line and even incorporating new lines to the tree.

Definition 5 (Attacking Set) Given a (not necessarily acceptable) tree TT(A) built
from a set X ⊆ LinesUT of lines rooted in A; the attacking set Att(TT(A)) is the mini-
mal subset of X if the tree built from the set (X \ Att(TT(A))) warrants A, otherwise
Att(TT(A)) = X .



We refer to the lines included in the attacking set as attacking lines. The objective
of Def. 5 is to identify attacking lines in a tree. This definition considers any set X ,
disregarding acceptability of lines and in/active arguments. (This generalization will be
useful later.) In particular, when X is a bundle set ST(A), the tree TT(A) is acceptable,
however, (ST(A)\Att(TT(A))) is not a bundle set, since it discards lines rooted inA, and
thus the tree built from it is not acceptable. That is, the removal of the attacking lines from
the bundle set of a non-warranting tree is not intended to conform a change operation,
but to pose a hypothetical scenario useful to isolate the causes for a non-warranting tree.
Observe that a tree without attacking lines is warranting.

Lemma 1 A tree TT(A) is warranting iff Att(TT(A)) = ∅.

Proposition 1 Given a line λ ∈ TT(A), if λ ∈ Att(TT(A)) then every B ∈ λ+ (resp.,
B ∈ λ−) is marked D (resp., U ).

The following example (worked throughout the rest of the article) shows the impor-
tance of identifying the precise argument –in a line to be altered– for which a defeater
needs to be activated. This is addressed by the argument selection function (Def. 6). Trees
are drawn with gray/white triangles denoting defeated/undefeated arguments.

Example 1 Consider a DAT T yielding the tree TT(A) on the right with lines
λ1 = [A,B1,B3] and λ2 = [A,B2,B4,B5]. There is a single attacking line
within the attacking set Att(TT(A)) = {λ2}. If we activate a defeater for
B2 in T, we would generate a new line within a new tree having no attacking
lines. If we instead add a defeater for B5, the line that was attacking is
“extended” and again, in the resulting tree, there would be no attacking
lines. On the other hand, if we activate a defeater for B4, we would generate
another attacking line.

A

B
2

B
1

B
4

B
3

B
5

We call effective alteration to the alteration of an attacking line that turns it to non-
attacking. The alteration of a given attacking line is done by activating a defeater D
for a con argument B in the line. This would imply B to end up marked as defeated.
Afterwards, from Prop. 1, the resulting altered line would not be attacking. However, a
variety of situations may appear: if D does not exist, the alteration of the line over B
turns out to be unachievable. Later it will be clear that, when this happens for every con
argument in the same line, the revision operation cannot succeed. On the other hand,
activating a defeater for a con argument may bring not only that argument to the resulting
tree, but a whole new subtree. Hence, an effective alteration in the activating approach
will require to ensure the new defeater to end up undefeated within the resulting tree.

Definition 6 (Argument Selection) Given a DAT T = 〈U, ↪→,v〉[A] and a line λ ∈
TT(A); the argument selection function γT : LinesAT → A is such that γT(λ) ∈ λ−.

When selecting a con argument from a line λ ∈ TT(A), a selection criterion could
lead the mapping of γT(λ) to an argument B ∈ λ− by setting an ordering among the con
arguments in λ. In this article we abstract away from any specific selection criterion.

Definition 7 (Set of Inactive Defeaters) Let T = 〈U, ↪→,v〉[A] be a DAT, the set of
inactive defeaters of an argument B in a line λ ∈ LinesAT, is determined by the function



idefsT : A× LinesAT → P(I) such that:
idefsT(B, λ) = {D ∈ I | for every λ′ ∈ LinesUT, such that D ∈ λ′ and λ↑[B] = λ′↑(D)}

From Def. 7, every inactive defeater D of B ∈ λ belongs to a line λ′ from LinesUT
which means that λ′ is acceptable but contains inactive arguments. Requiring λ′↑(D) to
coincide with λ↑[B] implies not only the segments from the root to B in both λ and λ′ to
be equal, but also D↪→B.

The following notion allows to anticipate the effect of several changes over a DAT
T by identifying a hypothetical tree HT(A,Ψ), as the tree rooted in A that would result
from T by the hypothetical activation of the arguments in a set Ψ ⊆ U. We refer to these
trees as hypothetical given that they do not appear within the domain TreesT.

Definition 8 (Hypothetical Tree) Given a DAT T = 〈U, ↪→,v〉[A], A ∈ A, and Ψ ⊆
U; the hypothetical treeHT(A,Ψ) is the tree built from the set of lines:
{λ↑[B] | ∀λ ∈ LinesUT,∀C ∈ λ↑[B] : C ∈ (A⊕Ψ) holds, where root(λ) = A and
either (B is the leaf of λ) or (∃D ∈ λ : λ↑(D) = λ↑[B] and D /∈ (A⊕Ψ))}

Example 2 (Ex. 1 cont.) Given the attacking line λ2 = [A,B2,B4,B5] from Ex. 1, in
order to warrant A a selection in λ should be performed. Assume that B2 is the most
suitable argument according to the selection criterion: γT(λ2) = B2. Let considerD1 ∈
idefsT(B2, λ2) as a B2’s defeater that could be activated, and assume the activation of
D1 determines a new active set of arguments such that {C1, C2} ⊂ A⊕{D1}.
Assume the collateral activation of C1 as a consequence of the acti-
vation of D1 –for instance, we could have that C′vD1, C′vC1 and
that the activation of C′ activates C1. Additionally, suppose that
C1↪→B4. Regarding C2, let assume it defeatsD1, thus the activation
of D1 would provoke C2 to be included in the resulting tree. Hence,
from the hypothetical tree HT(A, {D1}) on the right, A remains
defeated, since the mark of B2 could not be turned to D.

A

B
2

B
1

B
3
B
4

B
5

C
1

D
1

C
2

The addition of a defeater D for an argument in a line λ provokes a line extension:
if D attacks the leaf of λ, the whole line ends up extended; but if D attacks an argument
placed strictly above that leaf, a new argumentation line arises by extending an upper
segment of λ. The activation of D not only attaches D to λ, but it also includes the
addition ofD’s (active) defeaters, and these defeaters bring their (active) defeaters, and so
on, and finally an entire subtree rooted inD sprouts from the activation ofD. This subtree
could contain arguments that were already active, as well as arguments that ended up
activated by virtue of activeness propagation. It is required to verify that the selected con
argument (attacked by D) finally ends up defeated, making the alteration of λ effective.

Definition 9 (Argument Defeating) Given a DAT T = 〈U, ↪→,v〉[A] and a line λ ∈
LinesAT, where γT(λ) = B is the selected argument over λ ∈ TT(A) and A = root(λ);
the argument defeating function σT : LinesAT → U is:

σT(λ) =

{
D ∈ idefsT(B, λ) if B ∈ λ′ is marked D.
A otherwise.

where λ′ ∈ HT(A, {D}), and λ′↑[B] = λ↑[B].



The defeating function returns the root argument when either it does not find a de-
feater, or every defeater found leads to a non-effective alteration. Thus, there would be
no plausible inactive defeater for the selection at issue, situation that could be solved by
a new selection in the same line. This is addressed by the following principle.

(Effective Alteration) σT(λ) 6= A, for any λ ∈ TT(A).

Example 3 (Ex. 2 cont.) From γT(λ2) = B2 we have that introducing D1 as a defeater
for B2 would not be an effective alteration. Assume there exists a
second defeater D2 ∈ idefsT(B2, λ2) whose activation would yield
the hypothetical treeHT(A, {D2}) on the right. Now the mark of B2
turns to D; nonetheless, by assuming C3 ∈ A⊕{D2} and C3↪→B3,
line λ1 = [A,B1,B3] is collaterally altered, and even more, such
collateral alteration turns the line to attacking. Since this alteration
is independent from λ2, λ1 needs to be treated separately in a way
that such collateral alteration does not affect it.

A

B
2

B
1

B
3
B
4
D
2

B
5

C
3

Definition 10 (Collateral Alterations) Let T = 〈U, ↪→,v〉[A] be a DAT, the set of col-
lateral alterations of a line λ ∈ TT(A), where A = root(λ), is a function coll(σT) :

LinesAT → P(U× LinesAT) such that:
coll(σT)(λ) = {〈C, λ′〉 | for any λ′ ∈ TT(A) and any C ∈ λ′ such that for either λ 6= λ′

or C 6= γT(λ), it follows idefsT(C, λ′) ∩ (A⊕{σT(λ)}) 6= ∅}
A tuple 〈C, λ′〉 identifies C ∈ λ′ for which an inactive defeater is collaterally activated.

Example 4 Collateral alterations occur in Ex. 2, where activating D1 implies the col-
lateral activation of C1, and the collateral alteration of λ2. A similar situation occurs
in Ex. 3 with the activation of D2 and the collateral activation of C3. Finally, since
σT(λ2) = D2 we have that 〈B3, λ1〉 ∈ coll(σT)(λ2).

Collateral alterations should be controlled to avoid triggering new attacking lines.
Since these changes have still not been made to the theory, the selection necessarily
needs to map to arguments in the original tree. The selection function in a line that will
be collaterally altered should be required to map to an argument in the upper segment of
the collateral activation in that line. Thus we would preserve the effectivity of alterations
achieved through a defeating function.

(Preservation) If 〈C, λ〉 ∈ coll(σT)(λ′) then γT(λ) ∈ λ↑[C] and C 6= A, ∀λ′ ∈ TT(A)

Requiring to select in λ↑[C] ensures the mapping of the defeating function to provoke
an effective alteration, since the new subtree would appear only below C. This solves
having this subtree defeating a pro argument in λ. Collateral alterations may extend the
same line more than once. This threat is called cumulative collateral alteration.

(Non-Cumulativity) For any λ ∈ LinesUT and λ′ ∈ TT(A) such that σT(λ′) = D, if
λ↑(D) = λ′↑[B] then either D is a leaf of λ or there is some C ∈ λ such that D ∈ λ↑(C)

and ∀B′ ∈ λ↑(C) it holds that B′ ∈ A⊕{D} and C /∈ A⊕
⋃
σT(λ′′), ∀λ′′ ∈ TT(A)

To clarify, consider λ = [A, . . . ,B,D, . . . ,D′, C, . . .] where λ′ = [A, . . . ,B] is a
line in the tree to be altered. Assume a defeating function mapping to D, thus the activa-



tion of D leads to [A, . . . ,B,D, . . . ,D′] which ends up conforming the new altered line.
(Recall that the defeating function ensures this alteration to be effective.) Afterwards, an
argument activation from a different line in the tree triggers the collateral activation of
C, which ends up altering once more the same line, extending it. In this case, the activa-
tion of D cannot be ensured to be an effective alteration. Therefore, we need to protect
the new subtree rooted in D (attached to B) from collateral alterations like C, which are
“invisible” to the preservation principle.

Definition 11 (Warranting Defeating) A defeating function “σT” is said to be war-
ranting if it satisfies effective alteration, preservation, and non-cumulativity.

The alteration set of a tree, contains the tree’s attacking set along with those collat-
erally altered lines that end up turned into attacking in the resulting tree.

Definition 12 (Alteration Set) Given a DAT T = 〈U, ↪→,v〉[A]; the alteration set
ΛT(A) of the tree TT(A) ∈ TreesT is the least fixed point of the operator `T(A):
`T(A)

0
= Att(TT(A)), and

`T(A)
k+1

= `T(A)
k ∪ {λ′ ∈ TT(A)| for any λ ∈ Att(HT(A,Ψ)) there is some B ∈ λ

and D ∈ λ such that D /∈ λ′ and λ↑(D) = λ′↑[B] where Ψ =
⋃
λ′′∈`T(A)k σT(λ′′)}

Within a step `T(A)
k+1 we include the lines in `T(A)

k along with every λ′ ∈
TT(A) that would be collaterally altered (by activating an argument σT(λ′′) where λ′′ ∈
TT(A) and λ′′ belongs to `T(A)

k) conforming a line λ which would end up being a new
attacking line in the hypothetical tree. Finally, if “σT” is warranting then it cannot be the
case that λ′ = λ′′ holds. This means that once the mapping σT(λ′′) is considered in Ψ,
no collateral alteration of λ′′ will be included inAtt(HT(A,Ψ)) for any treeHT(A,Ψ).

Definition 13 (Argument Revision) An activating argument revision operator “∗”
over T = 〈U, ↪→,v〉[A] by A ∈ U is defined as:

T∗A =

{
〈U, ↪→,v〉[A′′] if “σT” is warranting, or
T otherwise,

where A′′ = A′⊕
⋃
λ∈ΛT′ (A) σT(λ) , A′ = A⊕{A}, and T′ = 〈U, ↪→,v〉[A′]

Example 5 (Ex. 3 cont.) From σT(λ2) = D2 we have that λ1 is collaterally altered by
the collateral activation of C3. Moreover, since line [A,B1,B3, C3]
is in the attacking set of HT(A, {D1}), the resulting alter-
ation set ends up being ΛT(A) = {λ1, λ2}. Note that having
〈B3, λ1〉 ∈ coll(σT)(λ2), from preservation γT(λ1) ∈ λ↑1[B3]
must hold. Thus, assuming γT(λ1) = B1 and σT(λ1) = D3,
preservation is guaranteed. Note that the defeating function
ends up guaranteeing also both the effective alteration and
the non-cumulativity principles. Finally, the warranting tree

A

B
2

B
1

B
3
B
4
D
2

B
5

C
3

D
3

on the right appears from the revised framework T∗A = 〈U, ↪→,v〉[A⊕{A,D2,D3}].

The following results ensure that the revision of a theory through a warranting de-
feating function is successful and warrantsA, as stated by Theorem 1. Corollary 1 states
that the revision does not change the original theory either when it already warranted A
or the revision could not be successful.



Lemma 2 If T∗A uses a warranting defeating function then Att(T(T∗A)(A)) = ∅.

Theorem 1 T∗A warrants A iff T∗A uses a warranting defeating function.

Corollary 1 T∗A = T iff either T warrants A or T∗A does not warrant A.

4. Conclusions, Related and Future Work

We have presented a new approach for argument revision considering activation of argu-
ments. This new approach is comprehended within Argument Theory Change [11] and
provides another standpoint to change the status of warrant of an argument.

Regarding related work, in [4] change is studied over the set of extensions of a sys-
tem after adding an argument. However, they pose a strong restriction: the newly added
argument must have at most one interaction (via attack) with an argument in the sys-
tem. This restriction (which we do not assume) greatly simplifies the revision problem,
as multiple interactions with the original system are difficult to handle. Moreover, we
consider the complexity added by subarguments.

Revision over an argumentation-based decision making system was defined in [2]
through a generalization of the revision technique from [4], which evaluates the warrant
status of a newly inserted argument supporting an option. A similar approach was pre-
sented in [3]. There, the abstraction of a framework (i.e., removal of a set of arguments
or attacks) is considered, and principles are proposed to establish conditions under which
the semantics remains unchanged, in order to avoid its recomputation.

References

[1] Carlos Alchourrón, Peter Gärdenfors, and David Makinson. On the Logic of Theory Change: Partial
Meet Contraction and Revision Functions. The Journal of Symbolic Logic, 50:510–530, 1985.

[2] Leila Amgoud and Srdjan Vesic. On revising argumentation-based decision systems. In ECSQARU,
pages 71–82, 2009.

[3] Guido Boella, Souhila Kaci, and Leendert van der Torre. Dynamics in argumentation with single exten-
sions: Abstraction principles and the grounded extension. In ECSQARU, pages 107–118, 2009.

[4] Claudette Cayrol, Florence Dupin de Saint-Cyr, and Marie-Christine Lagasquie-Schiex. Revision of an
Argumentation System. In KR, pages 124–134, 2008.

[5] Carlos Chesñevar, Ana Maguitman, and Ronald Loui. Logical Models of Argument. ACM Computing
Surveys, 32(4):337–383, 2000.

[6] Phan Minh Dung. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic
Reasoning and Logic Programming and n-person Games. AIJ, 77:321–357, 1995.

[7] Alejandro García and Guillermo Simari. Defeasible Logic Programming: An Argumentative Approach.
TPLP, 4(1-2):95–138, 2004.

[8] Sven Ove Hansson. Kernel Contraction. Journal of Symbolic Logic, 59:845–859, 1994.
[9] Martín Moguillansky, Nicolás Rotstein, Marcelo Falappa, Alejandro García, and Guillermo Simari. Ar-

gument Theory Change Applied to Defeasible Logic Programming. In AAAI, pages 132–137, 2008.
[10] Henry Prakken and Gerard Vreeswijk. Logical Systems for Defeasible Argumentation. In Handbook of

Philosophical Logic, 2nd ed. 2000.
[11] Nicolás Rotstein, Martín Moguillansky, Marcelo Falappa, Alejandro García, and Guillermo Simari. Ar-

gument Theory Change: Revision Upon Warrant. In COMMA, pages 336–347, 2008.
[12] Nicolás Rotstein, Martín Moguillansky, Alejandro García, and Guillermo Simari. An Abstract Argu-

mentation Framework for Handling Dynamics. In NMR, pages 131–139, 2008.


