Argument Theory Change:
Revision Upon Warrant

Nicolas D. ROTSTEIN, Martin O. MOGUILLANSKY,
Marcelo A. FALAPPA, Alejandro J. GARCIA and Guillermo R. SIMARI
Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET)
Laboratorio de Investigacion y Desarrollo en Inteligencia Artificial (LIDIA)
Department of Computer Science and Engineering
Universidad Nacional del Sur (UNS), Bahia Blanca, ARGENTINA
e-mail: {ndr, mom, maf, ajg, grs}@cs.uns.edu.ar

Abstract. We propose an abstract argumentation theory whose dynamics is cap-
tured by the application of belief revision concepts. The theory is deemed as ab-
stract because both the underlying logic for arguments and argumentative seman-
tics remain unspecified. Regarding our approach to argument theory change, we de-
fine some basic change operations along with their necessary theoretical elements
towards the definition of a warrant-prioritized revision operation. This kind of re-
vision expands the theory by an argument and then applies a contraction ensuring
that the added argument can be believed afterwards.

Keywords. Formalization of abstract argumentation, Applications

1. Introduction & Motivations

In this article, we introduce an abstract theory that captures the dynamics of a proposed
argumentation framework through the application of belief revision concepts. Often in
the literature, abstract argumentation frameworks [1,2] are built on top of Dung’s [3],
which does not consider dynamics. Therefore, we define a dynamic abstract argumen-
tation theory including dialectical constraints, and then we present argument revision
techniques to describe the fluctuation of the set of active arguments (the ones consid-
ered by the inference process of the theory). We claim that our theory is abstract from
two standpoints: (1) there is no restriction to any particular representation for arguments
nor argumentative semantics, (2) we provide a characterization of the change operators
(specially contractions), which is not restricted to a particular implementation.

Belief revision has been applied to an argumentation system in a previous work [4],
but in a rather different direction than the proposed here. In [4], a non-prioritized revision
is applied in order to insert (partially or totally) a given explanation (a minimal proof)
for a sentence to the knowledge base. If the explanation is partially accepted, it is then
recognized as an argument (a “defeasible” proof). A closer approach to the one here pre-
sented was given in [5], where a non-abstract preliminary investigation on the argument
revision matter was introduced.

In our approach, we define expansion, contraction, and revision operators, where the
latter can be expressed in terms of the other two, leading to an identity similar to the

one defined by Isaac Levi [6]. Our goal is to define an abstract theory that allows for
the introduction of an argument ensuring it can be believed afterwards. This is achieved
by applying a revision, that is, an expansion followed by a contraction. The expansion
operator is quite straightforward, but (as usual in any model for the theory change) the
main complexity relies on the definition of the contraction operator, which allows a wide
range of possibilities: from affecting unrestrictedly any number of arguments in the sys-
tem to keeping this perturbation to a minimum. This choice is up to the minimal change
principle followed by the specification of the contraction operation, which also has an
indirect impact over the attack relation among arguments.

This paper is organized as follows: first, we introduce the dynamic abstract argu-
mentation framework, then the argument theory change is defined, giving a very brief
overview of classic belief revision, and finally the argument change operators are defined,
along with an inter-definition between revision and contraction/expansion.

2. A Dynamic Abstract Framework with Dialectical Constraints

The framework proposed in this work is formed by arguments, possible ways of interre-
lating them, and a way of identifying those that are going to be part of the argumenta-
tive process. After presenting the dynamic abstract framework, we will give the specific
notion of argument used in this article.

Definition 1 (Dynamic Argumentation Framework) A dynamic argumentation frame-
work (DAF) @ is a tuple (U, A, R, C), where U is a finite set of arguments called univer-
sal, A C U is called the set of active arguments, R C U x U denotes an attack relation
between arguments, and C is a partial order over U called the subargument relation.

The universal set of arguments U characterizes the full set of arguments that could
appear in a given domain. At a given instant, the set A of active arguments will represent
the complete pool of arguments that can be used by the system to make inferences.
Note that U, R, and C are deemed as static, whereas the content of A is dynamic, since
any change in the system (i.e., its dynamics) is reflected into this set. Having both the
universal set of arguments and the subset of the currently active ones allows us to identify
the subset of inactive arguments, i.e., I = U\ A. The set of inactive arguments will
contain the remainder of arguments (in the universal set) that is not considered by the
argumentative process at a specific instant. Later in this article, we will show how inactive
arguments can be activated.

In the rest of the article, to refer to attacks between arguments, we will simply use
the word “attacks” or the notation .4;R.A5, which means that .A; attacks A, or equiva-
lently that A; is a defeater for As. As in [7], the symbol C denotes subargument relation:
A C B means that A is a subargument of 5 and B is a superargument of 4. Subargu-
ments are arguments; therefore, every subargument belongs to U, and they are a (distin-
guishable) part of the arguments they support. In this work, we will use the subargument
concept to be able to eliminate some part of a given argument. The reason for this will
be clear in the next section. We will refer to a proper subargument .4; of an argument A
as A;C.A, meaning that A;CA, but A; # A. Finally, since the subargument relation is a
partial order, it meets the properties of transitivity, antisymmetry, and reflexivity.

Definition 2 (Argument) An argument is a set of interrelated pieces of knowledge sup-
porting a claim from evidence and satisfying: Self-Consistency: A is self-consistent wrt.
R iff there are no A;,C.A, A;CA such that A;RA; nor A;RA;. Minimality: A is mini-
mal iff .4 supports « and there is no A;—.A such that .A; supports .

Definition 3 (Atomic Argument) Let (U, A, R,C) be a DAF. An argument A € U is
atomic iff there isno B € U such that B C.A.

We will refer as regular arguments to those defined in the usual sense, that is, as
a reason that supports a claim upon available evidence. We will consider evidence to
be an active regular atomic argument, i.e., a piece of evidence is an argument by itself.
This association turns out to be quite natural, since pieces of evidence can be thought as
indivisible and (self) conclusive. Note that an inactive regular atomic argument will not
be considered as evidence. Atomic arguments will also allow us to identify the building
blocks of an argument, i.e., its minimal portions, as will be clear in Example 1.

Besides regular arguments, we will identify potential arguments as a supporting
structure that is incomplete due to a lack of evidence (analogous to the concept intro-
duced in [8]). Thus, although potential arguments have an associated claim, they cannot
derive it by themselves. When evidence is not available, potential arguments will need
claims from other arguments to be able to reach their own. Therefore, the set U can be
seen as containing arguments that are not only active or inactive, but can be also regular
or potential, and even atomic or not, thus dividing U in eight classes of argument. The
need for three levels of classification will be clear in Section 3. For the definition of a
potential argument the following functions are necessary:

Atomic: v : U — P(U) is such that p(A) = {A;]A; is an atomic argument, A,C.A}
Completion: y : U — U where x(.A) is a regular argument 3 composed only by atomic
arguments, such that u(.A) C u(B), and u(B)\ i(.A) is a non-empty set of regular atomic
arguments.

There are multiple ways of completing any given argument, but the completion func-
tion x gives the only one composed by the atomic arguments of .4 along with the neces-
sary regular atomic arguments to support the claim.

Definition 4 (Potential Argument) A is a potential argument for o iff A does not
support « and the completion x(.A) is an argument for « (i.e., it satisfies minimality and
self-consistency).

In order for a potential argument to support its claim, other arguments should provide
their own claims as a replacement for the missing evidence. Despite claims supported by
an argument can be used when no evidence is available?, they clearly differ in semantics:
evidence is indisputable, whereas claims supported by an argument could be defeated.
The notions of minimality and self-consistency indirectly apply to potential arguments,
since their completion is a regular argument.

We will identify the set of regular arguments as Reg and the set of potential argu-
ments as Pot. When convenient, these sets will be subscripted with A or T, according to
their nature of active or inactive. In what follows, we will use a graphical notation, intu-

INote that a claim does not appear by itself, but it is always supported by an argument.

itive in nature, to depict regular and potential arguments: both will be
represented as triangles, but potential arguments will contain a black
“slot” in their base. The position of subarguments within an argu-
ment will suggest that upper potential subarguments need the claim
of those placed at lower positions in order to reach a claim. This is
shown in Figures 1 and 2, where subarguments at the base are re-
quired to reach a claim in order for the subargument at the top to Figurel. A€ Pot
reach its own.

For the following example only, we will assume a structure for arguments by us-
ing (propositional) logic programming. This will be useful to understand the graphical
representation of arguments and subarguments and their condition of regular or potential.

Example 1
Consider an argument A = {¢ < b,b < a,a}, then we will say that .4 supports

¢, therefore A € Reg. Moreover, the subargument A; = {b < a,a} also belongs to
Reg provided it supports b, but then the subargument A, = {c¢ « b}

belongs to Pot given it cannot reach its claim c¢ by itself. Further-
more, two subarguments A;1,.412C.4, are such that 4, = {a} and
A1o = {b < a}, where the latter belongs to Pot and the former to Reg.
This configuration is depicted in the figure. Notice that this graphical
notation can replace the logical representation for arguments. From now on, we are go-
ing to rely on the graphical representation in order to make a complete abstraction over
any underlying logic of arguments.

The graphical representation allows us to recognize a particular configuration of
subarguments: if a potential subargument is placed at the bottom of an argument triangle,
then this argument is potential. For instance, in Figure 1 we have
that argument A contains arguments Ay, A5 and A3, where A; is
a potential argument that is fed by the claims of 4> and A3. Thus,
since Aj3 is a potential subargument of A (placed at its base), then A
is also potential. In opposition to this, in Figure 2 is shown a similar
case, in which both arguments at the base of the triangle (B2 and 53)
are not potential, and therefore the whole argument 3 is not potential. Figure2. B € Reg

Definition 5 (Equistructural Arguments) Let p be the Atomic function. Two argu-
ments .A; and A, are said to be equistructural iff u(A;) = u(As).

Example 2

We can give an alternative representation A’ for argument A in
Example 1. Since the sets of atomic arguments (i.e., A11, A2, As2) of
A and A’ are the same, .4 and .4’ are equistructural. Note that the
order from bottom to top of the atomic arguments is the same in both
cases, as would be expected.

Having more than one representation for the same argument could be a problem; in
those situations, equistructurality would allow us to identify the class of equistructural
arguments from which just one should be used.

As stated above, arguments can be either active or inactive. The interaction between
arguments and subarguments regarding activeness will be made clear by the activeness

propagation principle, which defines the dynamics of the system. A group of arguments
being active determines that an argument containing them (exclusively) is going to be
active. Furthermore, a single argument becoming active makes all of its subarguments
to become active. This also works the other way around: if a subargument A; of an
argument A is set inactive, then every superargument of 4; is set inactive, including A.
Moreover, the inactiveness of A; means that at least one subargument of it is inactive.
Activeness propagation is formally defined as follows:

(Activeness Propagation) A € A iff for every A;C.A we have that 4; € A.

As a basis for our analysis we will use a DAF enriched with the notion of dialectical
constraint. The resulting extended framework will be called a dynamic argumentation
theory. The following definitions are an extended version of those in [9].

Definition 6 (Argumentation Line) Let ® be a DAF. An argumentation line A in ® is
any finite sequence of arguments [A4;, ..., A,] such that A; R A;_;,for1 < i < n. If
Ay is the first element in A, we will also say that) is rooted in .A;. The upper segment
of Awrt. A;, is defined as AT(A;~1) = [A1, ..., A;_1], and AT(A;) does not exist.

Definition 7 (Set of Interference (Supporting) Arguments) Let A be an argumenta-
tion line, then the set of interference (resp., supporting) arguments A~ (resp., A™) of A
is the set containing all the arguments placed on even (resp., odd) positions in .

We will write Ciness to denote the set of all possible argumentation lines regarding
the arguments in ®. These lines define a domain onto which different constraints can be
defined. As such constraints are related to sequences which resemble an argumentation
dialogue between two parties, we call them dialectical constraints. Formally:

Definition 8 (Dialectical Constraint) Let ® be a DAF. A dialectical constraint C in the
context of @ is any function C : Linese, — {T'rue, False}. A given argument sequence
A € Lines, satisfies C in @ when C(\) = True.

Definition 9 (Dynamic Argumentation Theory) A dynamic argumentation theory
(DAT) T is a pair (®,DC), where ® is a DAF satisfying activeness propagation, and
DC = {Cy,C,,...,C} is afinite (possibly empty) set of dialectical constraints.

Definition 10 (Acceptable Argumentation Line) Given a DAT T' = (®,DC), an ar-
gumentation line)\ is acceptable wrt. 7" iff A satisfies every C; € DC, and every 5 € A
is active regular.

In what follows, we will assume that the notion of acceptability imposed by di-
alectical constraints is such that if \ is acceptable wrt. a DAT 7' = (®, DC), then any
subsequence of \ is also acceptable. We also assume a dialectical constraint that avoids
the construction of circular argumentation lines, thus no line will contain two or more
equistructural arguments.

Definition 11 (Bundle Set) Given a DAT T, aset S = {\1, A2, ..., A\, } of argumenta-
tion lines rooted in a given argument A, denoted S 4, is called a bundle set wrt. T iff
there is no pair A;, A; € S such that \; is a subsequence of A;.

Definition 12 (Dialectical Tree) Let T be a DAT, and let A be an argument in 7' and
let Su = {A1, \a,..., A, } be abundle set. The dialectical tree rooted in .A based on .S 4
(denoted 7) is a tree-like structure defined as follows:
1. The root node of 74 is A.
2. Let F = {tail(\), for every A € S}, and H = {head()\), for every \ € F}.?
If H = () then 74 has no subtrees. Otherwise, if H = {By,...,5,}, then for
every B; € H, we define: getBundle(;) = {\ € F' | head(\) = B;}
We put 75, as the immediate subtree or .4 based on getBundle(3;).
We will denote Tree, to the family of all possible dialectical trees in the DAT T'.

Acceptable dialectical trees are a subclass of dialectical trees that contain only ac-
ceptable argumentation lines. In the sequel, we will just write “dialectical trees" to refer
to acceptable dialectical trees, unless stated otherwise. Acceptable dialectical trees allow
to determine whether the root node of the tree is to be accepted (ultimately undefeated) or
rejected (ultimately defeated) as a rationally justified belief. A marking function provides
a definition of such acceptance criterion. Formally:

Definition 13 (Marking criterion) Let 7" be a DAT. A marking criterion for 7" is a func-
tion Mark : Tveer — {D,U}. We will write Mark(74) = U (resp. Mark(74) = D) to
denote that the root node A of 7, is marked as undefeated (resp. defeated).

Definition 14 (Warrant) Let T be a DAT and Mark a marking criterion for 7'. An active
regular argument A is a warranted argument (or just warrant) wrt. a marking criterion
Mark in T iff the dialectical tree 7 is such that Mark(74) = U.

Example 3

The digraph of arguments in Figure 3(a) describes a DAF, where the nodes are ar-
guments and the arcs denote the attack relation with the arrowhead pointing to the ar-
gument under attack. The set A of active arguments is shown, along with the universal
U, and the set I of inactive arguments, which are illustrated as dashed triangles. Subar-
guments were drawn following the aforementioned convention. Note that the superargu-
ment of 4 is inactive because it has an inactive subargument.

@ (b)

Figure 3. (a) Dynamic argumentation framework example (b) Tree spanning from A

Figure 3(b) shows a dialectical tree spanning the graph from argument .A. Observe
that despite an attack occurs between an inactive and an active argument, inactive ar-

2The functions head()) and tail(\) have the usual meaning in list processing.

guments are not considered when analyzing the tree. The marking of this dialectical tree
would allow us to determine if the root argument is warranted. Consider a marking func-
tion where each node of the tree is undefeated if either it is a leaf or all of its defeaters
are defeated. With such a marking, the root node would be defeated. This status could be
changed if we deactivate either the root’s left defeater or both.

3. An Approach to an Argument Theory Change

We will briefly introduce some of the basic concepts of the belief revision theory [10].
Classic operations in the theory change, as those specified in the AGM model [11], are
known as expansions, contractions, and revisions. An expansion adds a new belief to the
epistemic state without guaranteeing its consistency after the operation. A contraction
eliminates a belief from the epistemic state and some beliefs that make possible its de-
duction. The sentences to eliminate might represent the minimal change on the epistemic
state. Finally, a revision inserts a sentence into the epistemic state, guaranteeing consis-
tency if the input sentence was consistent. Hence, a revision adds a new belief possibly
eliminating others to avoid inconsistencies. The latter change operation has been defined
through the Levi Identity [6], which is a composition of sub-operations that ensures con-
sistency by contracting the negation of the sentence at issue, and therefore by expanding
it to the resulting knowledge base.

Regarding an argument change theory, a useful kind of revision would be to add an
argument to a theory in such a way that this argument ends up being warranted. There-
fore, in the rest of the article, we explore a contraction operator that will allow us to define
a revision operator that follows the desired behavior. Firstly, we will introduce the basic
theoretical elements required to modify a dialectical tree and turn the marking of its root
argument to warranted. Then, we will define these three operations: (1) Argument expan-
sion, which activates an argument; (2) Non-warrant argument contraction, which deac-
tivates arguments in a particular tree looking to warrant its root; (3) Warrant-prioritized
argument revision (WPA revision), defined from the previous operations.

3.1. Basic Theoretical Elements for Argument Theory Change

We need to characterize the kind of argumentation lines that actually affect the status
of the root argument. We will call these lines attacking lines, and will be those over
which the argument selection and then the argument incision are going to be applied.
Although the main idea is to turn every attacking line into non-attacking, the correctness
of the revision must not depend on whether it is possible to determine which lines are
attacking; that is, if selections and incisions are applied to every line in the tree, the
revision should remain correct. The condition of attacking for a given argumentation line
is strictly dependant on the adopted marking function.

Definition 15 (Set of Attacking Lines) Given a DAT T and the dialectical tree 74
based on the bundle set S 4, the set of attacking lines Att 4 over A is the minimal subset
of S, such that S/, = S, \ Att4 is the bundle set for A in a hypothetical DAT 7", where
the dialectical tree based on S’, warrants A.

Remark 1 (Notational Shortcuts) In the rest of the article, we will work on a DAT
T = (9,DC), & = (U,A,R,C) with an active regular argument .A as the root of a
dialectical tree 74 (from Tree,) based on a bundle set S, C Linesq, where its (accept-
able) argumentation lines \; € S, are to be associated to 74 by the notation \; € 74.
Arguments will be noted only as A4, B, and C, being .A always the root of 7, and B and
C, inner nodes in that tree, i.e., A, B,C € T4. Finally, B (resp. B;") will mean that
B e X (resp. B € \)).

Definition 16 (Argument Selection Function “~”) An argument selection function
~v : Linesy — U is applied to every attacking line A\; € Att, in such a way that
~v(A;) = B; and)\TT(B;) ¢ Att 4. In what follows, we will refer to the selected argument
B, justas V;.

It is reasonable to require the argument selection function to return an interference
argument, since these arguments are the ones that contradict the root. The condition of
attacking of a given line should only depend on interference arguments —deactivating a
supporting argument should not turn an attacking line into a non-attacking line. Further-
more, the deactivation of an interference argument from a non-attacking line should not
turn this line into an attacking line.

Definition 17 (Argument Incision Function “¢”) A function o : U — P(U) is an ar-
gument incision function iff C o(¥;) C u(;).

Incisions should be guided by an “intra-argument” criterion. For instance, they could
be defined following some epistemic entrenchment method, namely, evidence might be
considered more important than any other subargument. Therefore, it would be preserved
from being cut off, unless it is not possible. The way arguments are incised should be de-
fined by an internal selection function, which is out of the scope of this paper. Sometimes
incisions will affect more arguments than the one being incised. In order to identify this
situation, we introduce the notion of collateral incision; formally:

Definition 18 (Collateral Incision) A collateral incision over B; is defined as o(¥;) N
w(B;) # 0. 1fa(;) N u(C;) = 0 forevery C; € /\;(Bj), we will say that o(¥;)(53) =
o(¥;) N pu(B;) is the uppermost collateral incision.

Collateral incisions bring about some drawbacks: supporting arguments could be
involuntarily deactivated, which might turn a non-attacking line into an attacking line.
Besides, as said before, it is not reasonable to think that if the supporting argument be-
longed to an attacking line, its deactivation would change the line’s status. Moreover,
although a collaterally incised interference argument does not turn lines into attacking,
it would also be an unnecessary incision. Therefore, it is desirable to select arguments in
which any incision would never result in a collateral incision to other arguments. This is
captured by the cautiousness property:

(Cautiousness) u(¥) N pu(B) = 0, for any B

Definition 19 (Cautious and Non-Cautious Selections) A selection ¥ is identified as
cautious iff it verifies cautiousness; otherwise, it is identified as non-cautious.

Sometimes cautiousness may not be satisfied. In such a case, when a non-cautious
selection is unavoidable, the incision in it should avoid any collateral incisions over any
argument. However, this situation may not be always prevented and should be properly
addressed. These difficulties are captured by the following principle:

(Preservation) If o(W;)(Bi) = () then
exists Al (B;) and (; € AL(B;) iff AL(B;) € Atty),
for any B;

This principle is illustrated in Figure 4. When an incision o (;) AN NB)
in the *" dialectical line (the left branch in Figure 4) results in an -
uppermost collateral incision o (¥;)%3) over argument B; in the 5" 4
dialectical line (right branch), it must be ensured that the selection
W in the j** line is performed over the upper segment AT(B ;). This \DA
selection is only performed if A;(Bj) is an attacking line. Finally, A
note that if B; is the root node, then there is no upper segment for it.

In the case of the antecedent of the preservation principle being ;
false (when there is no collateral incision over any argument 5; in 0(‘1’1-)(3) A
any j*" line) the validity of the preservation principle is not threat- N

J

B.
o(¥) 4 ! ’

ened. This particular case may be referred as:
Figure4. Preservation

(Strict-Preservation) o(0)(%) = (), for any B

An incision satisfying strict-preservation ensures no argument is collaterally incised,
although this principle cannot be always verified. The following two propositions ad-
dress the relation between cautiousness and strict-preservation. Proposition 1.1 states
that, when a selection is cautious, there is no overlapping with any argument; therefore,
the incision over that selection verifies strict-preservation. However, a non-cautious se-
lection could verify strict-preservation if, even though it overlaps with some argument,
the incision over that selection is performed outside this overlapping. In this case, there
is no collateral incision and strict-preservation holds (Proposition 1.2). Achieving strict-
preservation regardless cautiousness may be also a desirable property.

Proposition 1 2

(1) If ¥, is cautious, then o (W;) is strict-preserving.

(2) If T; is non-cautious and there exists C € p(¥;) such that CiZ B, (for every 13;), then
there exists some o (¥;) such that it is strict-preserving.

Regarding collateral incisions, it is paramount to preserve the root argument A as
active. In order to achieve this, no collateral incision should affect any subargument of
A; otherwise, it would be impossible to warrant it.

(Root-Preservation) o(¥)A4) = ()

Root-preservation is a particular case of strict-preservation, where the argument
B is the root argument .A. Since /\}(A) does not exist, the consequent of this instance

3Formal proofs were omitted due to space reasons.

of the preservation principle is always false, which means that the antecedent should be
false in order for the principle to hold. This is so when root-preservation is satisfied.
Therefore, collateral incisions over the root argument should always be avoided.

Proposition 2 Regarding an argument incision function “o”’, if preservation is satisfied,
then root-preservation is also satisfied.

Definition 20 (Warranting Incision Function) An argument incision function *“o”” ver-
ifying preservation is said to be a warranting incision function.

In the following subsections, we will introduce the expansion and the non-warrant
contraction operators in order to define the warrant-prioritized revision operator.

3.2. Argument Change Operators

The argument expansion can be defined in a simple manner by just adding an argument
to the set of active arguments; formally:

Definition 21 (Argument Expansion) An argument expansion operator “+4 over T
by a regular argument A € U, namely T 4+ A, is defined as follows:

T 444 = ((U,AU{A}R,C),DC)

Note that whenever an argument A is activated, by activeness propagation every
subargument in it is automatically activated. This is part of the dynamism of the theory.
Moreover, the definition of the argument expansion has the inherent implications to ex-
pansions within any non-monotonic formalism: despite of the set A being increased, the
amount of warranted consequences could be diminished.

An argument contraction operator could be defined analogously to this expansion by
incising a given argument, thus deactivating it. Nonetheless, this contraction would not
be very useful towards the definition of a warrant-prioritized revision operation. Next we
will define a particular kind of contraction devoted to this purpose.

This contraction operator provides warrant for an argument A € A by turning every
attacking line in 74 to a non-attacking line through an argument incision function o.

Definition 22 (Non-Warrant Argument Contraction) A non-warrant argument con-
traction operator “—<«”" of T by a regular argument A € A, namely 7" —* A, is defined
by means of a warranting incision function “o" applied over selections ¥; = ~(\;) for
each \; € Att, in 74, as follows:

T-+A= (<U>A \ Uz U(\Ili)’ R, E>a DC)

In contrast to the expansion, in the case of contractions the deactivation of atomic
arguments by an incision involves the automatic deactivation of their superarguments.

A warrant-prioritized argument (WPA) revision operator should look for the expan-
sion of an argument .4 revising the warrant condition of its claim. This means that af-
ter the argument expansion “+” of A, we should warrant its claim by effect of a non-
warrant argument contraction “—<”. This operation is formally defined as follows:

Definition 23 (Warrant-Prioritized Argument Revision) A warrant-prioritized argu-
ment revision operator of 7" by a regular argument A € U, namely 7' x“ A, is defined

by means of a warranting incision function “c”” applied over selections ¥; = ~(\;) for
each \; € Att, in 74, as follows:

T x“A = (U, (AU {A})\ U, o(¥,),R,C),DC)

Definition 23 can be rewritten in terms of an argument expansion and a non-warrant
contraction as an analogy of the Reversed Levi Identity [10]:

(Argument Change Identity) T x“ A = (T 4~ A) —“ A

In order to warrant an argument A from a theory 7', a non-warranting contraction is
applied considering the tree 74. If A & A, then A is impossible to warrant since 7, does
not exist. This means that, when revising 7" by A, first we need to expand 7" by A, thus
assuring that A is active, and 74 can be built. Therefore, the non-warranting contraction
of T+4 A by A can be performed, leading to the argument change identity.

Theorem 1 Let 7" be a DAT, “x“”’, a WPA Revision Operator, and .4, an argument. If
Tr =T x“Aisthe DAT revised by A4, then A is warranted from T'y.

Proof sketch: Let 7, be a tree from (T+4.A). If A is not warranted, then there is at least
one attacking line (\;). Selections over attacking lines (v(\;)) return an interference ar-
gument (¥;) responsible for that line being attacking. Incisions over the selected argu-
ments (o(¥;)) leave a subtree of 74 containing non-attacking upper segments (AZT (7,))
of the former attacking lines. If uppermost collateral incisions (o (¥;)(%)) occur and
their upper segments ()\} (B;)) turn out to be attacking lines, they will be considered in
concordance with the preservation principle. Finally, the tree resulting from the selection
and incision process contains no attacking lines, and therefore A is warranted.

Example 4

Let us consider a non-warrant argument contraction performed to warrant A,
whose tree is depicted in the figure. In this example we will select
the lowest possible argument satisfying cautiousness within each /
attacking line in the tree. This criterion attempts to preserve the <~
tree structure. Besides, we will use the marking function from Ex- /@ 2 3
ample 3, and assume that attacking lines are those ending with
an interference argument. Regarding the line [A, By, B4], no inci- /&
sion has to be performed, since it ends with a supporting argu-
ment. Line [A, Ba, B5, B7] is attacking and B2 should be selected, £ A

since selecting B would violate cautiousness. Finally, in the line
[A, Bs, Bg, Bs], Bs is selected and incised. The resulting argumentation lines after the
contraction are [A, By, B,4] and [A, B3, Bg], and .A ends up warranted.

In the hypothetical case of a selection choosing the lowest argument regardless cau-
tiousness, the selection in line [A, Bo, Bs, 7] would be B~. Note that its incision would
inevitably affect Bg, which ends up deactivated by a collateral incision. The upper seg-
ment of Bg in line [A, B3, Bg, Bs] is [A, B3], which is an attacking line, and thereafter
argument 33 is selected and later on incised, because of preservation. The resulting lines
after this contraction are [A, By, B4] and [A, B2, Bs] and A is thus warranted.

The latter case shows why the property of preservation is needed: otherwise ar-
gument Bg could be eligible to be incised, thus leaving the upper segment of Bg (i.e.,
[A, Bs]) as an attacking line for a defeated root argument.

4. Conclusions & Future Work

Throughout this paper, an abstract argumentation framework was proposed to be capa-
ble of dealing with knowledge dynamics. We also gave structure to arguments through
the subargument relation without losing the property of being abstract. Along with this
structure we defined an incomplete form of argument that can be put together with evi-
dence in order to form an argument in the usual sense. To characterize the dynamics of
the theory, we have shown how to adapt elements from the classic theory change to fit
into the description of the proposed framework. The methods here introduced would be
useful for an argumentation-based agent that is immersed in a changing environment.

Further analysis of the argument change operators was left as future work, including
the specification of other versions of them and the definition of a set of basic postulates.
Future work also includes the definition of change operators that works over the set of
attack relations among arguments. This would add greater flexibility to the approach here
presented, allowing for the representation of a dynamic preference criterion among argu-
ments. Preferences could change either towards a goal or in response to a change in the
“rules of the game”. A similar idea could be applied to the set of dialectical constraints.
Finally, the complex composition of arguments from their subarguments, along with their
multiple representations, requires further study in order to define new properties for this
theory such as theory equivalence and minimal theories.

References

[1] H. Prakken and G. Vreeswijk. Logical Systems for Defeasible Argumentation. In D.Gabbay, editor,
Handbook of Philosophical Logic, 2nd ed. Kluwer Academic Pub., 2000.

[2] C. Chesfievar, A. Maguitman, and R. Loui. Logical Models of Argument. ACM Computing Surveys,
32(4):337-383, December 2000.

[3] P.Dung. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning and
Logic Programming and n-person Games. Artificial Intelligence, 77:321-357, 1995.

[4] M. Falappa, G. Kern-Isberner, and G. Simari. Explanations, Belief Revision and Defeasible Reasoning.
Artificial Intelligence Journal, 141(1-2):1-28, 2002.

[5] M. Moguillansky, N. Rotstein, M. Falappa, and G. Simari. A Preliminary Investigation on a Revision-
Based Approach to the Status of Warrant. In Proc. of CACIC 2007, pages 1536-1547, 2007.

[6] I. Levi. Subjunctives, Dispositions, and Chances. Syntﬁese, 34:423-455, 1977.

[7]1 D. Martinez, A. Garcia, and G. Simari. Modelling Well-Structured Argumentation Lines. In Proc. of
International Joint Conference on Artificial Intelligence 1JCAI-2007 (in press), 2007.

[8] M. Capobianco, C. Chesfievar, and G. Simari. An Argument-Based Framework to Model an Agent’s
Beliefs in a Dynamic Environment. Proc. of the 1st. International Workshop on Argumentation in
Multiagent Systems. AAMAS 2004 Conference, New York, USA, 3366:96-111, 2005.

[9] C. Chesfievar and G. Simari. A Lattice-based Approach to Computing Warranted Belief in Skeptical
Argumentation Frameworks. In Proc. of the 20th Intl. Joint Conf. on Artificial Intelligence (IJCAI 2007),
Hyberabad, India, pages 280-285, January 2007.

[10] S. Hansson. A Textbook of Belief Dynamics: Theory Change and Database Updating. Springer. 1999.
[11] C. Alchourrdn, P. Gardenfors, and D. Makinson. On the Logic of Theory Change: Partial Meet Contrac-
tion and Revision Functions. The Journal of Symbolic Logic, 50:510-530, 1985.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

