
An Argumentation Machinery to Reason over
Inconsistent Ontologies⋆

Martín O. Moguillansky1, Renata Wassermann2, and Marcelo A. Falappa1

1 CONICET, AI R&D Lab (LIDIA), Universidad Nacional del Sur (UNS), Argentina
{mom,maf}@cs.uns.edu.ar

2 Department of Computer Science (DCC), University of São Paulo (USP), Brazil
renata@ime.usp.br

Abstract. Widely accepted argumentation techniques are adapted to define a
non-standard description logic (DL) reasoning machinery.A DL-based argumen-
tation framework is introduced to reason about potentiallyinconsistent ontolo-
gies. Arguments in this framework can handle different DL families like ALC,
EL, and DL-Lite. Afterwards, we propose an algorithm based on debugging tech-
niques and classical tableau-basedALC satisfiability to build arguments, and dis-
cuss about the computational cost of reasoning through the proposed machinery.

1 Introduction

Much effort has been dedicated to the study of models for debugging and repairing
ontologies, aiming at restoring consistency. One of the most influencing works on this
matter is Schlobach and Cornet’s [12]. However, in ontologies conceptualizing certain
domains like medicine and law, it is well known the need to avoid loosing beliefs dis-
regarding inconsistencies. In such areas, paraconsistentmethods are usually needed in
order to reason over inconsistency. Argumentation theory appears as an interesting al-
ternative. For instance, in [10], ontologies (with some restrictions) are translated into
the defeasible logic programming argumentation system (DELP) [9]. Nonetheless, it is
more desirable to benefit from the continuous advances done in the area of ontology rea-
soning, and thus building DL-argumentation machineries ontop of the corresponding
specialized DL reasoner. This would also avoid any unnecessary additional complexity
arising from the translation of ontologies to different logics. The main objective of this
work is focused on the study of such DL-argumentation theories.

Some argumentation systems have been implemented with promisory results, as is
the case of DELP among others. However, the study of complexity of reasoning through
argumentation is still at its initial stages. Some results are available in [6]. In this ar-
ticle, we walk our first steps towards the complexity analysis of our proposed DL-
argumentation machinery, which is defined upon DL semantic entailment. This allows
to reason by relying on interpretation models, and therefore, tableaux techniques may
be easily reused towards future implementations. Hence, since this methodology can be
implemented on top of the corresponding DL reasoner, its complexity will be attached
to that of the problem of reasoning in the underlying DL. We show this on ontologies

⋆ Partially supported by UNS (PGI 24/ZN18) and CONICET (PIP 112-200801-02798).

based on anALC fragment, known as unfoldedALC, through an algorithm for building
the set of defeaters of a given argument. Such algorithm is shown to correspond to the
complexity class of the problem of reasoning in unfoldedALC, which is in PSPACE.
This algorithm would be useful for building dialectical trees (trees of arguments), as the
elementary structure upon which the adopted argumentationsemantics rely.

2 Description Logics: Brief Overview

An ontologyΣ = 〈T ,A〉 details knowledge in terms of intensional/extensional infor-
mation described inT (TBox)/A (ABox). The symbolsA andC identify atomic and
general concepts, andP andE, atomic and general roles, respectively. Symbolsa, b, . . .

identify constant named individuals from the domain, andx, y, . . ., free variables. The
sets NV and NC are assumed to contain variables and constant names, respectively. A
TBox usually contains axioms likeC1 ⊑ C2 identified asgeneral concept inclusions
(GCIs); and an ABox,membership assertionslike C(a) andE(a, b). However, differ-
ent restrictions may appear depending on each specific description language. From now
on we assume the reader is familiar with DLs. For more detailson DLs refer to [2].

DL-semantics is given in terms of the standard set theoreticTarskian semantics,
throughinterpretationsI = (∆I , ·I). If the interpretationI is model of the ontology
Σ, we write I |= Σ, implying I |= φ, for every assertionφ ∈ Σ. An ontology is
satisfiable(or consistent) if it admits at least one model. An ontology iscoherentif it is
satisfiable and for every conceptC and every modelI, CI is non-empty. Anincoherent
ontology considers a conceptC which does not accept any individual in some model;
however satisfiability could still hold in such ontology. Finally, an ontologyΣ logically
implies(or entails) an assertionφ, writtenΣ |= φ, if for every modelI of Σ, I |= φ.

To verify logical implications of DL formulae we rely onreasoning services (RS)
like subsumption(Σ |= C1 ⊑ C2), instance checking(Σ |= C(a) or Σ |= E(a, b)),
andknowledge base satisfiability(whether the ontology admits at least one model). In
addition,query answering(Σ |= q(x̄)) has been most widely considered for querying
DLs. A conjunctive query (cq)q(x̄), with a tuplex̄ ∈ (NV)n of arity n ≥ 0, is a non
empty set of atomsC(z), E(z1, z2), z1 =z2, or z1 6=z2, whereC andE are respec-
tively a general concept and a general role ofΣ, and only the names{z, z1, z2} ∩ NV

are considered in̄x. Function var : (NV)n−→2NV identifies the variables in̄x. When
x̄ is the empty tuple, no free variables are considered and the query is identified as
boolean. Intuitively, q(x̄) represents the conjunction of its elements. LetI be an inter-
pretation, andm : var(x̄) ∪ NC−→∆I a total function. Ifz ∈ NC thenm(z) = zI

otherwisem(z) = a ∈ ∆I . We writeI |=m C(z) if m(z) ∈ CI , I |=m E(z1, z2)
if (m(z1), m(z2)) ∈ EI , I |=m (z1 =z2) if m(z1)=m(z2), andI |=m (z1 6=z2) if
m(z1)6=m(z2). If I |=m φ for all φ ∈ q(x̄), we writeI |=m q(x̄) and callm amatchfor
I andq(x̄). We say thatI satisfiesq(x̄) and writeI |= q(x̄) if there is a matchm for I
andq(x̄). If I |= q(x̄) for all modelsI of an ontologyΣ, we writeΣ |= q(x̄) and say
thatΣ entailsq(x̄). Note that by answering cqs, instance checking ends up subsumed.

Reasoning in the standardALC (C −→ A|⊥| ⊤|¬C|C ⊓C|C ⊔C|∀P.C|∃P.C) is
EXPTIME-complete, however, by restricting their use to unfoldableALC, satisfiability
turns to PSPACE-complete. (A TBox is called unfoldable if the left-hand sides of ax-

ioms (defined concepts) are atomic, and if the right-hand sides (definitions) contain no
direct or indirect reference to the defined concept.) The panorama gets worse by relying
upon more expressive DLs. Different DLs have been proposed aiming at reducing the
complexity of reasoning in detriment of their expressivity. That is the case ofEL [1]
(C −→ A|⊥|⊤|C ⊓ C|∃P.C), whose satisfiability checking was shown polinomial.

ForALC (and some extensions) andEL, we will only consider the RSs ofsubsump-
tion Σ |= C1 ⊑ C2; andquery answeringΣ |= q(x̄). In addition, for those languages
whose names contain the letterH, subsumption also corresponds toΣ |= E1 ⊑ E2.
This is the case ofALCH, ELH, andALCNH−1,¬ (see Ex. 5), among others.

A particular family of DLs which aims at lower complexity in detriment of expres-
sivity is DL-Lite [5]. These logics allow to reason about large amounts of assertional
data (ABox). Data complexity of query answering (wrt. the size of the ABox) is in
LOGSPACE for most of the DL-Lite members, and polinomial regarding the whole on-
tology. Moreover, queries over DL-Lite ontologies may be rewritten as SQL queries so
that standard database query engines can be used. TheDL-Litecore grammar is given
by B −→ A|∃R, C −→ B|¬B, R −→ P |P−, andE −→ R|¬R. In DL-Litecore,
the TBox is formed by axioms likeB ⊑ C, and the ABox by membership assertions
like A(a) andP (a, b). Adding to DL-Litecore axioms likeR ⊑ E, or functional re-
strictions like (functR), renders the languagesDL-LiteR andDL-LiteF , respectively.
(An interpretationI is a model of a(functR) if the binary relationRI is a function,
i.e., (x, y1) ∈ RI and(x, y2) ∈ RI implies y1 = y2. In this case, thefunctionality
checkingRS Σ |= (functR) andΣ |= ¬(functR), is considered.) Combining both
extensions rendersDL-Lite(RF), whose satisfiability turns to EXPTIME-hard.

3 DL Argumentation

An argumentmay be seen as a set of interrelated pieces of knowledge (in a languageL)
providing support to a claim. A languageLcl for claims is assumed: for anyφ ∈ Lcl,
there is a setΦ ⊆ L such thatΦ |= φ. Caligraphic lettersA, B, . . . , denote arguments.

Definition 1 (Argument). An argumentB is a structure〈∆, β〉, where∆ ⊆ L is the
body, β ∈ Lcl theclaim, and it holds(1) ∆ |= β, (2) ∆ is satisfiable (or∆ 6|= ⊥), and
(3) ∄X ⊂ ∆ : X |= β. We say thatB supportsβ.

Queries done to a knowledge base (KB) are supported through the claim of ar-
guments. For ontology reasoning, we assume arguments’ bodies to be included in an
ontologyΣ ⊆ L, whereL is the underlying DL inΣ. In this work, we writeL to refer
to general description languages (unless we reifyL to a specific DL).

The domain of arguments from an ontologyΣ is identified through the setAΣ.
By means ofbd : AΣ−→2L and cl : AΣ−→Lcl, the bodybd(B) and claimcl(B)
of an argumentB ∈ AΣ, may be respectively identified. Observe that claims (within
Lcl) conform toL since they are not necessarily contained inΣ but entailed byΣ.
The entailment|= is obtained through usual DL interpretations, and for querying on-
tologies we refer to RSs as presented before. Hence, arguments should support RSs
through their claims conforming the languageLcl −→ C1 ⊑ C2|q(〈〉), and we addi-
tionally considerE1 ⊑ E2, whenL = DL-LiteR or theL string contains anH; and

(functR)|¬(functR), whenL = DL-Lite(RF) or DL-LiteF . Observe that fromLcl’s
syntax,q(〈〉) refers to a cq with an empty tuple from NV . Hence, no argument supports a
claim with free variables. That is, for any ontologyΣ ⊆ L and any argumentB ∈ AΣ, if
cl(B) = q(x̄) thenx̄ = 〈〉. Given a queryα ∈ Lcl, an argumentB is aquery supporter
if B supportsα. We define the notion of query supporter to cope with any RS.

Definition 2 (Query Supporter). Given an ontologyΣ ⊆ L and a queryα ∈ Lcl ∪
{q(x̄)}; an argumentB ∈ AΣ is anα-supporter iff for every modelI of cl(B) there
exists a matchm for I andα such thatI |=m α holds, or equivalentlycl(B) |= α.

Primitivearguments like〈{A(a)}, A(a)〉 appear whenA(a) ∈ Σ; assuming{A(a),
A ⊑ B} ⊆ Σ, more complex arguments appear withinAΣ , like 〈{A ⊑ B}, A ⊑ B〉
and〈{A(a), A ⊑ B}, B(a)〉. An argumentB ∈ AΣ is subargumentof C ∈ AΣ (and
conversely,C is asuperargumentof B) if it follows that bd(B) ⊆ bd(C) holds; more-
over,B is a proper subargumentof C if bd(B) ⊂ bd(C) holds. Observe that〈{A ⊑
B}, A ⊑ B〉 is a subargument of〈{A(a), A ⊑ B}, B(a)〉. A functionality checking
(functR) is supported through〈{(functR)}, (functR)〉. For other arguments consid-
ering functional assertions, assume for instance,¬P (a, c) is supported through both
〈{P (a, b), (functP)}, {¬P (a, c)}〉 and〈{P (b, c), (functP−)}, {¬P (a, c)}〉. CQ’s like
q(x̄), where for instanceq(x̄) = {A(x), B(y)} and x̄ = 〈x, y〉, might be supported
through an argumentB = 〈{A(a), A ⊑ B}, q(ȳ)〉, whereq(ȳ) = {A(a), B(a)}, ȳ =
〈〉, and a matchm(x) = m(y) = a, appears. Observe that by changing the query to
q(x̄) = {A(x), B(y), x 6= y}, argumentB is no longer aq(x̄)-supporter. From now on
we refer to arguments likeB as〈{A(a), A ⊑ B}, {A(a), B(a)}〉, avoiding the explicit
writing of cq’s like q(〈〉) = {A(a), B(a)} as claims.

Counterargumentsare arguments whose claims pose justifications to disbelieve in
other arguments. From the standpoint of an ontologyΣ, counterarguments bring about
sources of incoherence/inconsistencydetermined by theirbodies. Counterarguments are
usually formalized upon negation of formulae, nonetheless, this is problematic in DLs
since negation of axioms can fall beyond the scope of the language. Hence, counterar-
guments are formalized upon DL satisfiability, avoiding theuse of negation of axioms.

Definition 3 (Counterargument). GivenΣ ⊆ L, argumentsB ∈ AΣ andC ∈ AΣ are
in conflict iff bd(B) ∪ cl(C) is unsatisfiable. ArgumentC is acounterargumentofB.

Argument-based preference relations usually determinedefeatsbetween arguments.
However, for simplicity we avoid its usage, and identifydefeatersstrightforwardly from
counterarguments:C defeatsB (notedC →֒B) iff C counterarguesB.

Usually, arguments can berebuttedwith an argument of opposite conclusion and
they can beundercutwith an argument whose conclusion opposes either explicitly or
implicitly to the body of the defeated argument. Given two argumentsB andC such that
C counterarguesB, we usually say thatC rebuttsB if it follows that cl(B) = ¬cl(C).
Nevertheless, for the case of DL-arguments this may not be sotrivial. Let us analyze
with more detail the negation of axioms in the context of DL arguments. Given an argu-
mentB = 〈{A ⊑ B, B ⊑ C}, A ⊑ C〉, a possible rebuttal would support an axiom like
¬(A ⊑ C). Negation of axioms likeA ⊑ C was studied in [8] determining two kinds
of negation:consistency-negation¬(A ⊑ C) = ∃(A ⊓ ¬C) andcoherency-negation
∼ (A ⊑ C) = A ⊑ ¬C. For the former, an existence assertion like∃(A ⊓ ¬C)(x)

would serve, however for languages without concept conjunction like DL-Lite(RF),
it would fall out of the scope. For such cases, the existence assertion can be rewrit-
ten as a cq likeq(〈x〉) = {A(x),¬C(x)}. For instance,C = 〈{A(a), A ⊑ ¬C},
{A(a),¬C(a)}〉 would be a possible rebuttal supportingq(〈x〉) with m(x) = a. On
the other hand, coherency-negation may be simply achieved by looking for an argu-
ment supportingA ⊑ ¬C. In addition, forDL-LiteF , we extend negation of axioms to
functional assertions, interpreting¬(functR) as a roleR that does not conform to the
definition of a function. An argument supporting such negation should consider exten-
sional information (ABox). For instance,〈{P (a, b), P ′(a, c), P ′ ⊑ P}, ¬(functP)〉.

Nonetheless, a major drawback appears when considering query answering: nega-
tion of cqs is in general undefined. As an alternative solution, we concentrate on finding
sources of DL unsatisfiability throughundercuts: C undercutsB iff C counterarguesB.
Several undercuts may appear for a same argument. Furthermore, as is shown next, an
undercut of an argumentB may encompass other defeaters ofB.

Example 1.Consider theDL-Litecore argumentsB = 〈{A(a), A ⊑ B}, {B(a)}〉 and
C = 〈{A(b), A ⊑ C, C ⊑ ¬B}, {A(b),¬B(b)}〉, andC’s subargumentC′ = 〈{A ⊑ C,

C ⊑ ¬B}, A ⊑ ¬B〉. BothC andC′ counterargueB.

Canonical undercuts[4] were defined (upon classic logic) as representatives of all
defeaters of an argument. The claim of a canonical undercutC negates the conjunctive
enumeration of all beliefs from the body of the counterargued argumentB, i.e., cl(C) =
¬(α1 ∧ . . . ∧ αn), wherebd(B) = {α1, . . . , αn}. However, such kind of claims would
fall out of the scope of a DLL. Canonical undercuts constitute minimal sources of
inconsistency (taken from the KB they are built) wrt. the body of the counterargued
argument. Thus, by following such intuition, we proposeminimal undercuts.

Definition 4 (Minimal Undercut). LetB, C ∈ AΣ be such thatC counterarguesB. C
is aminimal undercutofB iff there is no proper subargument ofC counterarguingB.

To illustrate this notion, note from Ex. 1, thatC′ is a minimal undercut ofB. Through
the use of minimal undercuts, we have restricted the consideration of counterarguments
to those of minimal body. However, for some DLs several minimal undercuts with dif-
ferent claims may appear (see Ex. 2). In such cases, we will keep those of maximum
entailment, identified asmaximally conservative undercuts(mcu, for short).

Definition 5 (Maximally Conservative Undercut). LetB ∈ AΣ andC ∈ AΣ be such
thatC minimally undercutsB. ArgumentC is amaximally conservative undercut (mcu)
ofB iff for every subargumentC′ of C minimally undercuttingB, cl(C) |= cl(C′) holds.

Example 2.Let C = 〈Ψ, A ⊔ B ⊑ ¬C〉, C′ = 〈Ψ, A ⊑ ¬C〉, andC′′ = 〈Ψ, B ⊑ ¬C〉,
with Ψ = {A ⊔ B ⊑ D, D ⊑ ¬C}; be threeALC minimal undercuts ofB =
〈{(A ⊓ B)(a), A ⊔ B ⊑ C}, {(A ⊔ B)(a), C(a)}〉. Note that onlyC is an mcu ofB.

Classic argumentation semantics like those from [7] (and others) can be applied to
the DL-argumentation framework presented here. Nonetheless, ontology reasoning re-
quires practical approaches. Hence, we should control the number of arguments needed
to reason. Since querying ontologies can be performed via RSs (Sect. 2), the reasoning

methodology we assume is based on the acceptability of some query supporter obtained
from AΣ . Thus, we rely on an argumentation semantics defined upondialectical trees.

One of the essential elements of this semantics is the notionof argumentation line:
a non-empty sequenceλ = [B1 . . . ,Bn] of arguments fromAΣ, whereBi →֒Bi−1, for
any1 < i ≤ n. ArgumentB1 is identified asλ’s root, andBn, asλ’s leaf. An argu-
mentation line could be seen astwo parties engaged in a discussion: one standing by
the root argument and the other arguing against it. Consequently, given a lineλ, we
identify theset of pro (resp, con) argumentscontaining all arguments placed on odd
(resp, even) positions inλ, noted asλ+ (resp,λ−). We will abuse notation and write
B ∈ λ to identifyB from the argumentation lineλ. An initial sequence of arguments in
a lineλ = [B1, . . . ,Bn] is identified through itsupper segmentλ↑[Bi] = [B1, . . . ,Bi],
with 1 ≤ i ≤ n. Besides, theproper upper segmentof λ wrt. Bi (i 6= 1) is defined as
λ↑(Bi) = [B1, . . . ,Bi−1]. We refer to both proper and non-proper upper segments sim-
ply as “upper segments” and will be distinguishable only through the notation (round or
square brackets respectively).Acceptability conditionsare used to determine finite and
non-fallacious lines, namedacceptable argumentation lines, which are ensured to be
non-circular and concordant. A line[B1, . . . ,Bn] is non-circular iff for any1 ≤ i ≤ n,
the smallest subargumentC of Bi such thatC is defeated byBi+1, is not reintroduced in
the rest of the line, that isC is not a subargument of any argumentBj , with i < j ≤ n. A
line λ is concordant iff the sets

⋃
B∈λ+ bd(B) and

⋃
B∈λ−

bd(B) of bodies of pro and
con arguments (respectively) are individually satisfiable. More on acceptability condi-
tions can be found in [9]. Additionally, lines will be required to beexhaustive: if λ is
acceptable, extending it with any defeater of its leaf determines a non-acceptable line.

On the other hand, the acceptability of a query supporterR ∈ AΣ , namely thewar-
rant status ofR, is determined by analizing thedialectical treerooted inR. Such tree
is built from a maximal set of argumentation lines rooted inR. Reducing the number
of arguments’ defeaters allows us to shrink the set of argumentation lines used to build
dialectical trees. The usage of mcus results benefitting to such end, allowing to consider
a single defeater from a set of minimal undercuts of a common argument. However, for
DLs where logic equivalence of claims is possible, several mcus may appear.

Example 3.GivenΣ ⊆ ALC andB = 〈{A ⊑ B′, B′ ⊑ ¬B}, A ⊑ ¬B〉 in AΣ. As-
suming〈{A(a), B(a)}, {(A ⊓ B)(a)}〉 and〈{A(a), B(a)}, {A(a), B(a)}〉 can be built,
both arguments are mcus ofB with identical bodies and logically equivalent claims.

Building dialectical trees requires to identifybundle sets: maximal sets of argumen-
tation lines rooted in a common argument. To such end, we define a domainLΣ contain-
ing all the acceptable and exhaustive lines.LΣ is ensured to be free of redundancies as
seen in Ex. 3, by restricting the use of mcus with equivalent claims (non-redundancy).

Definition 6 (Argumentation Line Domain). Given an ontologyΣ, theargumenta-
tion line domain LΣ , is the maximal set of argumentation linesλ = [B1, . . . ,Bn],
whereBi ∈ AΣ (for 1 ≤ i ≤ n), such thatλ is acceptable, exhaustive,maximally con-
servative(Bj is an mcu ofBj−1 (for 1 < j ≤ n)), andnon-redundancyis guaranteed:

(non-redundancy) for any{λ, λ′} ⊆ LΣ , B ∈ λ andC ∈ λ′, if bd(B) = bd(C) and
λ↑(B) = λ′↑(C) thenλ = λ′.

A bundle setfor R, noted asS(R), contains all the argumentation lines fromLΣ

rooted inR. From a bundle setS(R), the dialectical treeT (R) is constructed.

Definition 7 (Dialectical Tree). Given an ontologyΣ ⊆ L, a dialectical treeT (R)
rooted inR ∈ AΣ is determined by the bundle setS(R) ⊆ LΣ such that an argumentC
in T (R) is: (1) a node iff C ∈ λ, for anyλ ∈ S(R); (2) a child of a nodeB in T (R)
iff C ∈ λ, B ∈ λ′, for any{λ, λ′} ⊆ S(R), andλ′↑[B] = λ↑(C). Theleavesin T (R)
are the leaves of each line inS(R). The domain of trees fromΣ is noted asTΣ .

Example 4.
Given an ontologyΣ ⊆ L, and the bundle setS(R) ⊆ LΣ deter-

mining the dialectical treeT (R) ∈ TΣ (depicted on the right) such
thatS(R) = {λ1, λ2, λ3}, whereλ1 = [R,B1,B5], λ2 = [R,B1,B2],
andλ3 = [R,B3,B4,B5], are three acceptable, maximally conserva-
tive, and non-redundant lines. Observe that argumentB2 is a child of
B1 in T (R) given thatλ↑

1[B1] = λ
↑
2(B2) (see Def. 7).

We writeλ ∈ T (R) whenλ is a line inT (R). GivenΣ ⊆ L, a query supporter
R ∈ AΣ is finally accepted (or warranted) by analizing the dialectical treeT (R).
To such end, amarking functionmark : AΣ × LΣ × TΣ−→M assigns to each ar-
gument inT (R) a mark fromM = {D, U}, whereD/U means defeated/undefeated.
The mark of an inner node inT (R) is obtained from its children (i.e., its defeaters)
by following a marking criterion. We adopt a skeptical marking criterion (as used
in DELP [9]) defined as: (1) all leaves are markedU and (2) every inner nodeB is
markedU iff every child ofB is markedD, otherwise,B is markedD. Thewarranting
functionwarrant : TΣ−→{true, false} determines the root’s acceptance verifying
warrant(T (R)) = true iff mark(R, λ, T (R)) = U . Hence,R is warranted from
T (R) iff warrant(T (R)) = true. In such a case,T (R) is referred aswarranting
tree. These notions are illustrated with arguments painted in grey/white standing for
D/U marks. For instance, in Ex. 4,R is defeated and thusT (R) is non-warranting.

Definition 8 (Argumentative Entailment). GivenΣ ⊆ L and a queryα ∈ Lcl ∪
{q(x̄)}; Σ |≈ α iff there is a warrantedα-supporterR ∈ AΣ. If there is no warranted
α-supporter fromAΣ thenα is not entailed byΣ, noted asΣ 6|≈ α.

Theorem 1. Given an ontologyΣ ⊆ L, if Σ is coherent and consistent then for any
queryα ∈ Lcl ∪ {q(x̄)} it holdsΣ |= α iff Σ |≈ α.

Example 5.To analyze whether a given presidential formula is reliable, we study how
candidates voted for the last most relevant laws in the parlament, deciding in this manner
whether a pair of candidates might be coalitionable. For that matter, we consider a role
P , standing for presidential formula such that for any(x, y) ∈ P I , individual x is
candidate for president andy for vice-president; roleC (coalitionable candidates) such
that for any(x, y) ∈ CI , individualx andy are two politicians that are assumed to agree
according to their ideology on the most important national matters; conceptsL andL′,
standing for the two most relevant laws being promulged during the last presidential
period such thata ∈ LI (resp.,a ∈ L′I) identifies the politician that voted in favor of
theL’s (resp,L′’s) promulgation; conceptL1, standing for one of the most controversial

articles fromL’s promulgation such thata ∈ LI
1 identifies the politician that voted in

favor of L1. The ontologyΣ ⊆ ALCNH−1,¬ will contain axiomsP ⊑ C (every
presidential formula is coalitionable);C ⊑ C− (every coalitionable pair of politicians
is commutative);L1 ⊑ L (politicians in favor of articleL1 should have voted in favor
of law L); ∀P.⊤ ⊑= 1P and∀P−.⊤ ⊑= 1P− (a presidential formula should be
unique and the candidates should have the expected positionexplicitly announced, and
candidates presented in several presidential formulas areassumed to be less reliable);
and∀C.L ⊑ L and∀C.L′ ⊑ L′ (politicians agreeing inL or L′ are coalitionable).
TheΣ’s ABox will include P (a, b), P (a, c), P (d, e), ¬C(d, e), L(a), ¬L(b), L1(b),
¬L′(a), L′(c), where individualsa, b, c, d, e, are currently active politicians.

Checking the reliability of the presidential formulaP (a, b) implies finding out
whetherΣ |≈ P (a, b) holds. FromAΣ, R = 〈{P (a, b)}, {P (a, b)}〉 is a query sup-
porter, andB1 = 〈{P ⊑ C, C ⊑ C−, ∀C.L ⊑ L, L(a),¬L(b)}, {¬P (a, b)}〉, B2 =
〈{L1(b), L1 ⊑ L}, {L(b)}〉, B3 = 〈{P (a, c), ∀P.⊤ ⊑= 1P}, {¬P (a, b)}〉, B4 =
〈{P ⊑ C, ∀C.L′ ⊑ L′,¬L′(a), L′(c)}, {¬P (a, c)}〉, andB5 = 〈{P (d, e),¬C(d, e)},
{P (d, e),¬C(d, e)}〉, determine the treeT (R) depicted in Ex. 4. SinceT (R) is non-
warranting andR is the only query supporter, we concludeΣ 6|≈ P (a, b).

4 How Feasible is this Non-Standard DL-Reasoning Methodology?

To implement our argumentation-DL machinery two questionsneed to be addressed:
how to construct (1) an argument supporting a query, and (2) the defeaters of a given
argument. For (1) techniques upon the reasoning procedure on the DL at issue may
be used. Some works on this matter are [11] (inALC) and [3] (inEL). Here, we ad-
dress (2) by relying on MUPS (minimal unsatisfiability-preserving sub-TBoxes) and
MIPS (minimal incoherence-preserving sub-TBoxes) [12]. Such structures are defined
by following an extension of the standardALC-tableau [2] applied to unfoldableALC.
This algorithm is referred by the authors asaxiom pinpointing. Next we introduce the
intuitions to calculate MUPS, and afterwards extend them topropose an algorithm for
recognizing defeaters of a given argument. We will rely uponunfoldedALC ontologies.

Unsatisfiability of a concept is detected with a labelled saturated tableau. A labelled
tableau is a set of labelled branches. A labelled branch is a set of labelled formulas
of the form(a : C)X , wherea is an individual name,C is a concept, andX is the
label containing a set of axioms which leads to the inferenceof the formula(a : C).
A formula can occur with different labels on the same branch.A labelled tableau is
saturated if all its branches are closed. A branch is closed if it contains a clash,i.e., if
there is at least one pair of formulas with contradictory atoms on the same individual.
Hence, the information on which axioms are relevant for the closure (clash) of a branch
is contained in the labels of contradictory formulas. For instance, a branchλ is closed
if there is some pair(a : A)X ∈ λ and(a : ¬A)Y ∈ λ, whereA is an atomic concept.
That is, axioms fromX andY lead to clashes,i.e., X ∪ Y is unsatisfiable.

The closure of a branch is pursued by applying expansion rules which progressively
unfold axioms in a lazy manner. An example of expansion rule over a branchλ is, If
(a : A)X ∈ λ andA ⊑ C ∈ Σ thenλ is replaced in the tableaux byλ ∪ {(a :
C)X∪{A⊑C}}. Additional branches may be progressively included in the tableaux by

following a disjunctive rule which operates over formulas like (a : C1 ⊓ C2). (For an
account of the complete set of expansion rules, please referto [12].) Once no more rules
can be applied, a closed tableau is obtained through the setS of closed branches.

MUPS are constructed by building a labelled tableau for a branch initially con-
taining only (a : A)∅, and by applying aminimization functionϕ which also starts
in (a : A)∅. As expansion rules are applied to close the tableau, different rules also
expand the minimization function. The idea is to obtain the smallest conjunction of
axiomsα1 ∧ . . . ∧ αn, calledprime implicant, implying ϕ. This is built from labels
of contradictory formulae in each closed branch of the tableaux, henceαi ∈ Σ, for
any1 ≤ i ≤ n. As ϕ is a minimization function every implicant ofϕ is also a min-
imization function. Finally, the prime implicant is also a minimization function. This
means thatA is unsatisfiable whenα1 ∧ . . . ∧ αn is true, or equivalentlyA is unsatis-
fiable wrt. the setM = {α1, . . . , αn}, which is minimal since it comes from a prime
implicant (smallest conjunction of axioms implyingϕ). The MUPS forA wrt. Σ is
mups(A, Σ) = {M ⊆ Σ|A is unsatisfiable inM butA is satisfiable in anyM ′ ⊂ M}.

To calculate the defeaters of a given argumentB, we first calculatemups(A, Σ)
whereA ⊑ C ∈ bd(B). For any axiomA′ ⊑ C′ ∈ bd(B) which was not con-
sidered by the process to close the tableau (i.e., not included in any label), a new
MUPS mups(A′, Σ) should be obtained. (Only in the worst case a MUPS for every
axiom withinB should be constructed.) Once all the necessary MUPS are obtained,
we join them into a setmupsArg(B, Σ) =

⋃
A⊑C∈bd(B) mups(A, Σ). Finally, for any

M ∈ mupsArg(B, Σ), it holdsM \bd(B) is the body of a minimal undercut ofB, con-
forming definitions 1, 3, and 4 (an mcu conforming Def. 5 can beeasily obtained by ac-
commodating the claim). In order to find inconsistencies beyond incoherencies,i.e., to
find also contrary membership assertions form the ABox, the original MUPS algorithm
should consider additional expansion rules, thus turning MUPS from sub-terminologies
to sub-ontologies. This assumption should not affect the following analysis.

Calculating MUPS relies on the construction of a minimization function from a
tableau. Building it in a depth-first way allows to keep one single branch in memory
at a time. Hence, the complexity class of the MUPS problem corresponds to that of
the satisfiability checking in unfoldableALC, i.e., PSPACE. Since the size of prime
implicants may be exponential wrt. the number of axioms in the TBox, approximation
methods could avoid the construction of fully saturated tableaux to reduce the size of
the minimization functions. In addition, in order to renderall the necessary defeaters of
a given argumentB, the construction of several MUPS could be necessary. However,
the unfolding process would find (in general) most ofB’s axioms.

Theorem 2. Calculating all the defeaters of a givenALC argument is in PSPACE.

5 Conclusions and Future Work

A general DL-argumentation machinery was proposed. This new ontology reasoner
provides argumentation techniques to reason over inconsistent/ incoherent ontologies,
and behaves as a classical ontology reasoner when considering consistent ontologies
(Theorem 1). A similarALC-argumentation framework (without cqs support) was pro-
posed in [13], where difficulties regarding negation of DL-axioms were addressed by

specifying specialized semantics enriched with¬, ∧, and∨, to define defeaters. From
our viewpoint, this would require to extend widely acceptedALC-reasoning techniques
with classic logic characteristics in order to build arguments in practice.

As far as classic DL-reasoning methodologies are reused to construct machineries
for DL-argumentation, argumentation will provide a usefulalternative to reason over
inconsistent ontologies –the complexity of the argumentative reasoner will depend on
that of the adopted DL-reasoner. Nonetheless, certain increase in the complexity should
be presumed when working with huge dialectical trees, so establishing a relation to the
“level of inconsistency” (number of contradictory axioms)of the queried ontology.

The complexity analysis of answering whether a queryα is accepted by the DL-
argumentation machinery requires to construct and mark thedialectical tree rooted in
anα-supporter. In unfoldedALC, this problem approaches to that of calculating MIPS
from all MUPS. Moreover, since the number of defeaters for a complete dialectical tree,
may grow exponentially in the number of axioms of the TBox, webelieve that the con-
struction of the tree in unfoldedALC would be at least in EXPTIME (as satisfiability in
ALC). A deep analysis on this matter is underway. Future work also pursues complete
algorithms forALC and most importantly, for efficient DL families as DL-Lite and EL.

References

1. Baader, F.: Terminological Cycles in a Description Logicwith Existential Restrictions. In:
IJCAI. pp. 325–330 (2003)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): Description
Logic Handbook: Theory, Implementation and Application. Cambridge University Press,
Cambridge (2003)

3. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the Description Logic EL. In:
Description Logics (2007)

4. Besnard, P., Hunter, A.: A Logic-based Theory of Deductive Arguments. Artif. Intell. 128(1-
2), 203–235 (2001)

5. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable Reasoning
and Efficient Query Answering in Description Logics: The DL-Lite family. JAR 39(3), 385–
429 (2007)

6. Cecchi, L., Fillottrani, P., Simari, G.: On the complexity of DeLP through game semantics.
In: NMR. pp. 386–394 (2006)

7. Dung, P.: On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic
Reasoning and Logic Programming andn-person Games. Artif. Intell. 77, 321–357 (1995)

8. Flouris, G., Huang, Z., Pan, J., Plexousakis, D., Wache, H.: Inconsistencies, Negations and
Changes in Ontologies. In: AAAI. pp. 1295–1300 (2006)

9. García, A., Simari, G.: Defeasible Logic Programming: AnArgumentative Approach. TPLP
4(1-2), 95–138 (2004)

10. Gómez, S., Chesñevar, C., Simari, G.: Reasoning with Inconsistent Ontologies through Ar-
gumentation. Applied Artificial Intelligence 24(1&2), 102–148 (2010)

11. Meyer, T., Lee, K., Booth, R., Pan, J.Z.: Finding Maximally Satisfiable Terminologies for
the Description Logic ALC. In: AAAI (2006)

12. Schlobach, S., Cornet, R.: Non-Standard Reasoning Services for the Debugging of Descrip-
tion Logic Terminologies. In: IJCAI. pp. 355–362 (2003)

13. Zhang, X., Zhang, Z., Lin, Z.: An Argumentative Semantics for Paraconsistent Reasoning in
Description Logic ALC. In: Description Logics (2009)

