An Argumentation Machinery to Reason over
Inconsistent Ontologie$

Martin O. Moguillansky, Renata Wassermafirand Marcelo A. Falappa

1 CONICET, Al R&D Lab (LIDIA), Universidad Nacional del Sur ({S), Argentina
{rmom naf } @s. uns. edu. ar
2 Department of Computer Science (DCC), University of Sadd@uSP), Brazil
renat a@ ne. usp. br

Abstract. Widely accepted argumentation techniques are adaptedfitoede
non-standard description logic (DL) reasoning machin&ipL-based argumen-
tation framework is introduced to reason about potentiefonsistent ontolo-
gies. Arguments in this framework can handle different Dinifées like ALC,
EL, and DL-Lite. Afterwards, we propose an algorithm basedeirudging tech-
nigues and classical tableau-basedC satisfiability to build arguments, and dis-
cuss about the computational cost of reasoning throughrtgoped machinery.

1 Introduction

Much effort has been dedicated to the study of models for giging and repairing
ontologies, aiming at restoring consistency. One of thetrimfisiencing works on this
matter is Schlobach and Cornet’s [12]. However, in ont@sgionceptualizing certain
domains like medicine and law, it is well known the need toidoosing beliefs dis-
regarding inconsistencies. In such areas, paraconsisithbds are usually needed in
order to reason over inconsistency. Argumentation theppears as an interesting al-
ternative. For instance, in [10], ontologies (with someriesons) are translated into
the defeasible logic programming argumentation systesh PIP[9]. Nonetheless, it is
more desirable to benefit from the continuous advances adhe area of ontology rea-
soning, and thus building DL-argumentation machineriesopnof the corresponding
specialized DL reasoner. This would also avoid any unnacgse&lditional complexity
arising from the translation of ontologies to differentilcgy The main objective of this
work is focused on the study of such DL-argumentation thesori

Some argumentation systems have been implemented withigopmesults, as is
the case of BLP among others. However, the study of complexity of reaspttirough
argumentation is still at its initial stages. Some resulesavailable in [6]. In this ar-
ticle, we walk our first steps towards the complexity analysi our proposed DL-
argumentation machinery, which is defined upon DL semamtigiknent. This allows
to reason by relying on interpretation models, and theegf@ableaux techniques may
be easily reused towards future implementations. Heneeg $his methodology can be
implemented on top of the corresponding DL reasoner, itsptexity will be attached
to that of the problem of reasoning in the underlying DL. Wewlthis on ontologies

* Partially supported by UNS (PGI 24/ZN18) and CONICET (PIR-2D0801-02798).



based on amlLC fragment, known as unfoldedZC, through an algorithm for building
the set of defeaters of a given argument. Such algorithmag/istio correspond to the
complexity class of the problem of reasoning in unfold&dC, which is in PSPACE.
This algorithm would be useful for building dialecticalése(trees of arguments), as the
elementary structure upon which the adopted argumentsgiorantics rely.

2 Description Logics: Brief Overview

An ontology X’ = (7, A) details knowledge in terms of intensional/extensionainf
mation described ir7 (TBox)/A (ABox). The symbolsd andC' identify atomic and
general concepts, afdandE, atomic and general roles, respectively. Symhbols . . .
identify constant named individuals from the domain, ang, . . ., free variables. The
sets N and N: are assumed to contain variables and constant names, tiesjye@
TBox usually contains axioms lik€; = C, identified asgeneral concept inclusions
(GCls) and an ABoxmembership assertioriike C'(a) andE(a,b). However, differ-
ent restrictions may appear depending on each specificiggsnianguage. From now
on we assume the reader is familiar with DLs. For more detalBLs refer to [2].

DL-semantics is given in terms of the standard set theofe@iskian semantics,
throughinterpretationsZ = (AZ,.Z). If the interpretatiorf is model of the ontology
Y, we writeZ = X, implyingZ = ¢, for every assertiom € Y. An ontology is
satisfiablg(or consistentif it admits at least one model. An ontologydeherentf it is
satisfiable and for every conceptand every model, C7 is non-empty. Arincoherent
ontology considers a conceptwhich does not accept any individual in some model;
however satisfiability could still hold in such ontologynglly, an ontology> logically
implies(or entailg an assertio, written X' |= ¢, if for every modelZ of X, 7 = ¢.

To verify logical implications of DL formulae we rely oreasoning services (RS)
like subsumptiofX = C; C Cb), instance checking” = C(a) or X' = E(a,b)),
andknowledge base satisfiabilifwhether the ontology admits at least one model). In
addition,query answerindX' = ¢(Z)) has been most widely considered for querying
DLs. A conjunctive query (cq)(z), with a tuplez € (Ny)™ of arity n > 0, is a non
empty set of atom€’(z), E(z1,22), 21 =22, Of 21 # 22, WwhereC' and E are respec-
tively a general concept and a general rolehfand only the name§z, 21, 22} N Ny
are considered k. Function war : (Ny)"—2V identifies the variables i@. When
Z is the empty tuple, no free variables are considered and ukeyds identified as
boolean Intuitively, ¢(z) represents the conjunction of its elements. Léte an inter-
pretation, andn : var(Z) U Nc— A7 a total function. Ifz € N¢ thenm(z) = 2%
otherwisem(z) = a € AZ. We writeZ =™ C(z) if m(z) € CT, T ™ E(z1, 22)
if (m(zl),m(ZQ)) S EI, A ':m (21:2’2) if m(zl):m(ZQ), andZ ':m (217&22) if
m(z1)#m(ze). If Z =™ ¢ forall ¢ € ¢(z), we writeZ =™ ¢(z) and callm a matchfor
T andq(z). We say thaf satisfies;(z) and writeZ |= ¢(Z) if there is a matchm for 7
andq(z). If Z = q(z) for all modelsZ of an ontologyX’, we write X' = ¢(Z) and say
that X entailsq(z). Note that by answering cgs, instance checking ends up mézsu

Reasoning in the standadiCC (C — A|L| T|-C|C N C|CUC|VYP.C|3P.C)is
EXPTIME-complete, however, by restricting their use toaldable ALC, satisfiability
turns to PSPACE-complete. (A TBox is called unfoldable # taft-hand sides of ax-



ioms (defined concepts) are atomic, and if the right-hanelss{definitions) contain no
direct or indirect reference to the defined concept.) Th@pana gets worse by relying
upon more expressive DLs. Different DLs have been proposeih@ at reducing the
complexity of reasoning in detriment of their expressivitat is the case of £ [1]
(C — A|L|T|C N C|3P.C), whose satisfiability checking was shown polinomial.

For ALC (and some extensions) aéd, we will only consider the RSs alubsump-
tion ¥ = C; C Cs; andquery answering” = ¢(z). In addition, for those languages
whose names contain the lettr; subsumption also correspondsXol= E; C Es.
This is the case ol LCH, ELH, andALCN'H ™1™ (see Ex. 5), among others.

A particular family of DLs which aims at lower complexity irettiment of expres-
sivity is DL-Lite [5]. These logics allow to reason aboutdaramounts of assertional
data (ABox). Data complexity of query answering (wrt. theesof the ABox) is in
LOGSPACE for most of the DL-Lite members, and polinomialating the whole on-
tology. Moreover, queries over DL-Lite ontologies may benitten as SQL queries so
that standard database query engines can be used-hée ... grammar is given
by B — A|3R, C — B|-B, R — P|P~, andE — R|-R. In DL-Lite e,
the TBox is formed by axioms lik& T C', and the ABox by membership assertions
like A(a) and P(a,b). Adding to DL-Lite.,.. axioms like R C FE, or functional re-
strictionslike (functR), renders the languag&d -Litez andDL-Liter, respectively.
(An interpretatiornZ is a model of afunctR) if the binary relationk? is a function,
i.e, (z,y1) € RT and(x,y2) € RT impliesy; = . In this case, thdunctionality
checkingRS X' |= (functR) and X' = —(functR), is considered.) Combining both
extensions rendeBL-Lite r -y, whose satisfiability turns to EXPTIME-hard.

3 DL Argumentation

An argumenimay be seen as a set of interrelated pieces of knowledgedimpaibge’)
providing support to a claim. A languadg; for claims is assumed: for any € L1,
there is a seb C L such that? = ¢. Caligraphic letters4, B, ..., denote arguments.

Definition 1 (Argument). AnargumentB is a structure(A, 5), whereA C L is the
body 8 € L., theclaim, and it holds(1) A |= 3, (2) Alis satisfiable (orA p= 1), and
(3) X Cc A: X = (. We say thaBB supportsg.

Queries done to a knowledge base (KB) are supported thrdwglelaim of ar-
guments. For ontology reasoning, we assume argumentsesaodlibe included in an
ontologyX’ C £, where, is the underlying DL in¥. In this work, we writel to refer
to general description languages (unless we réitg a specific DL).

The domain of arguments from an ontology is identified through the seky.
By means oftd : Ax—2° andcl : Ax——L., the bodybd(B) and claimc((B)
of an argumenB8 € Ay, may be respectively identified. Observe that claims (withi
L) conform to£ since they are not necessarily containedtrbut entailed byX.
The entailment= is obtained through usual DL interpretations, and for gingrpn-
tologies we refer to RSs as presented before. Hence, ardgsisieould support RSs
through their claims conforming the languagg — C:1 C Cs|q(()), and we addi-
tionally considerk; C Es, whenL = DL-Liter or the £ string contains art/; and



(functR)|-(funct R), whenL = DL-Liteiz 7y or DL-Liter. Observe that fronC.,’s
syntaxg(()) refers to a cq with an empty tuple from/NHence, no argument supports a
claim with free variables. That is, for any ontologyC £ and any argumeif € Ay, if
cl(B) = q(z) thenz = (). Given a queryx € L., an argumenB is aquery supporter

if B supportsy. We define the notion of query supporter to cope with any RS.

Definition 2 (Query Supporter). Given an ontology’ C £ and a queryy € L. U
{q(Z)}; an argument3 € Ay is ana-supporter iff for every modell of c[(B) there
exists a matchm for Z anda such thatZ =™ « holds, or equivalently((B) = .

Primitivearguments liké{ A(a)}, A(a)) appear whenl(a) € X; assuming A(a),

A C B} C X, more complex arguments appear wittip, like ({A C B}, A C B)
and({A(a), A C B}, B(a)). An argument3 € Ay is subargumenof C € Ax (and
conversely( is asuperargumenof B) if it follows that bo(B) C bd(C) holds; more-
over, B is aproper subargumentf C if bo(5) C 62(C) holds. Observe that{ A C
B}, A C B) is a subargument of{ A(a), A C B}, B(a)). A functionality checking
(functR) is supported througky{ (functR)}, (functR)). For other arguments consid-
ering functional assertions, assume for instaneB(a, ¢) is supported through both
({P(a,d), (functP)},{—P(a,c)})and({ P(b, c), (funct P~)},{—P(a,c)}). CQ’s like
q(z), where for instance(z) = {A(x), B(y)} andz = (z,y), might be supported
through an argumert = ({A(a), A C B}, q(7)), whereq(y) = {A(a), B(a)}, § =
(), and a matchm(z) = m(y) = a, appears. Observe that by changing the query to
q(z) = {A(x), B(y), z # y}, argument3 is no longer a(z)-supporter. From now on
we refer to arguments likB as({A(a), A C B}, {A(a), B(a)}), avoiding the explicit
writing of cq’s like ¢({)) = {A(a), B(a)} as claims.

Counterargumentare arguments whose claims pose justifications to diskeeliev
other arguments. From the standpoint of an ontoldgygounterarguments bring about
sources of incoherence/inconsistency determined byliloelies. Counterarguments are
usually formalized upon negation of formulae, nonethelégs is problematic in DLs
since negation of axioms can fall beyond the scope of theulagg. Hence, counterar-
guments are formalized upon DL satisfiability, avoiding tise of negation of axioms.

Definition 3 (Counterargument). GivenX' C £, argumentd3 € Ay, andC € Ay are
in conflict iff bd(B) U cl(C) is unsatisfiable. Argumemtis a counterargumenbf B.

Argument-based preference relations usually deterohéfieatdetween arguments.
However, for simplicity we avoid its usage, and identifsfeaterstrightforwardly from
counterarguments: defeats3 (notedC—B) iff C counterargues.

Usually, arguments can brebuttedwith an argument of opposite conclusion and
they can baundercutwith an argument whose conclusion opposes either explioitl
implicitly to the body of the defeated argument. Given twguanents3 andC such that
C counterarguess, we usually say thaf rebutts3 if it follows that c[(B) = —c[(C).
Nevertheless, for the case of DL-arguments this may not kewsal. Let us analyze
with more detail the negation of axioms in the context of Dyuaments. Given an argu-
mentB = ({AC B,B LC C}, AL C), apossible rebuttal would support an axiom like
—(A C C). Negation of axioms liked C C was studied in [8] determining two kinds
of negation:consistency-negation(A = C') = 3(A N —-C) andcoherency-negation
~(A E C) = A C —C. For the former, an existence assertion liked N —C)(z)



would serve, however for languages without concept coniondike DL-Liter r),
it would fall out of the scope. For such cases, the existessertion can be rewrit-
ten as a cq likey((x)) = {A(z),~C(z)}. For instanceC = ({A(a),A T ~C},
{A(a),-C(a)}) would be a possible rebuttal supportigg(x)) with m(z) = a. On
the other hand, coherency-negation may be simply achieydddking for an argu-
ment supportingd = —C'. In addition, forDL-Liter, we extend negation of axioms to
functional assertions, interpreting functR) as a roleR that does not conform to the
definition of a function. An argument supporting such nemashould consider exten-
sional information (ABox). For instancé{ P(a,b), P'(a,c), P’ C P}, =(functP)).
Nonetheless, a major drawback appears when considering goswering: nega-
tion of cgs is in general undefined. As an alternative sofytice concentrate on finding
sources of DL unsatisfiability througindercutsC undercuts3 iff C counterargues.
Several undercuts may appear for a same argument. Furthesrasois shown next, an
undercut of an argumeiit may encompass other defeaterd3of

Example 1.Consider theDL-Lite.,r. argumentss = ({A(a), A C B}, {B(a)}) and
C={ADb),AC C,CC B}, {A(b),~B(b)}), andC’s subargumerd’ = ({A C C,
C C -B}, AC -B). BothC andC’ counterargués.

Canonical undercutf4] were defined (upon classic logic) as representatived of a
defeaters of an argument. The claim of a canonical und€raggates the conjunctive
enumeration of all beliefs from the body of the counteradgargumenss, i.e., c[(C) =
—(a1 A ... Aay), wherebd(B) = {ay, ..., a,}. However, such kind of claims would
fall out of the scope of a DLL. Canonical undercuts constitute minimal sources of
inconsistency (taken from the KB they are built) wrt. the pad the counterargued
argument. Thus, by following such intuition, we proposi@imal undercuts

Definition 4 (Minimal Undercut). LetB,C € Ax, be such that counterargues3. C
is aminimal undercutof B iff there is no proper subargument@&fcounterarguings.

To illustrate this notion, note from Ex. 1, th@tis a minimal undercut a. Through
the use of minimal undercuts, we have restricted the coretide of counterarguments
to those of minimal body. However, for some DLs several maliomdercuts with dif-
ferent claims may appear (see Ex. 2). In such cases, we veifl Kgose of maximum
entailment, identified amaximally conservative undercytacy for short).

Definition 5 (Maximally Conservative Undercut). Let B € Ay, andC € Ay be such
thatC minimally undercut$s. Argument is amaximally conservative undercut (mcu)
of B iff for every subargumeidt’ of C minimally undercuttingds, c[(C) = ¢[(C’) holds.

Example 2.LetC = (¥, AUBC ~C),C' = (¢, AC -C), andC” = (¥, B C =C),
with# = {AUB C D,D C —C},; be threeALC minimal undercuts of5 =
{(AnB)(a), ALUBLC C},{(AU B)(a),C(a)}). Note that onlyC is an mcu of3.

Classic argumentation semantics like those from [7] (ahérs) can be applied to
the DL-argumentation framework presented here. Nonethetstology reasoning re-
quires practical approaches. Hence, we should controltheer of arguments needed
to reason. Since querying ontologies can be performed via(R&ct. 2), the reasoning



methodology we assume is based on the acceptability of saerg qupporter obtained
from Ax. Thus, we rely on an argumentation semantics defined dj@dectical trees
One of the essential elements of this semantics is the nofiargumentation line
a non-empty sequence= [B; ..., B, ] of arguments from\y,, whereB3;—B5;_4, for
any1l < i < n. Argument’3; is identified as\’s root, and5,,, as\’s leaf. An argu-
mentation line could be seen &go parties engaged in a discussiane standing by
the root argument and the other arguing against it. Conselgugiven a line\, we
identify theset of pro (resp, con) argumentsntaining all arguments placed on odd
(resp, even) positions ik, noted as\* (resp,A~). We will abuse notation and write
B € A toidentify 5 from the argumentation lin&. An initial sequence of arguments in
aline\ = [By,...,B,] is identified through itsipper segment![B;] = [B1, ..., B,
with 1 < ¢ < n. Besides, the@roper upper segmemtf A wrt. B; (i # 1) is defined as
M(B;) = [Bi, ..., B;_1]. We refer to both proper and non-proper upper segments sim-
ply as “upper segments” and will be distinguishable onlptlgh the notation (round or
square brackets respectivelfcceptability conditionare used to determine finite and
non-fallacious lines, nameacceptable argumentation lineshich are ensured to be
non-circular and concordant. A lin8y, . . ., B,,] isnon-circular iff foranyl <i < n,
the smallest subargumanhbf 5, such that is defeated bys; 1, is not reintroduced in
the rest of the line, that S is not a subargument of any argumgpt withs < j <n.A
line X is concordant iffthe setg J;.,+ b0(B) and{Jgz - bd(B) of bodies of pro and
con arguments (respectively) are individually satisfiaMere on acceptability condi-
tions can be found in [9]. Additionally, lines will be reqait to beexhaustiveif X is
acceptable, extending it with any defeater of its leaf detees a non-acceptable line.
On the other hand, the acceptability of a query supp@ter Ay, namely thewvar-
rant status ofR, is determined by analizing trdialectical treerooted inR. Such tree
is built from a maximal set of argumentation lines rootedinReducing the number
of arguments’ defeaters allows us to shrink the set of arguatien lines used to build
dialectical trees. The usage of mcus results benefittingdb end, allowing to consider
a single defeater from a set of minimal undercuts of a commguraent. However, for
DLs where logic equivalence of claims is possible, seve@alsimay appear.

Example 3.Given X C ALC andB = ({AC B',B’'C -B}, AC =B) in Ay. As-
suming({A(a), B(a)},{(A N B)(a)}) and{{ A(a), B(a)}, {A(a), B(a)}) can be built,
both arguments are mcus Bfwith identical bodies and logically equivalent claims.

Building dialectical trees requires to identliyndle setsmaximal sets of argumen-
tation lines rooted in a common argument. To such end, weealafitomairi_s, contain-
ing all the acceptable and exhaustive lirles.is ensured to be free of redundancies as
seen in Ex. 3, by restricting the use of mcus with equival&ires (non-redundancy).

Definition 6 (Argumentation Line Domain). Given an ontology”, theargumenta-
tion line domain Ly, is the maximal set of argumentation lings= [B4,...,B,],

whereB3; € Ay (for 1 <i < n), such that\ is acceptable, exhaustiveaximally con-
servative(3; is an mcu of3;_; (for 1 < j < n)), andnon-redundancyis guaranteed:

(non-redundancy) for any{\, \'} C Ly, B € AandC € X, if bd(B) = bd(C) and
A(B) = NT(C) then\ = X,



A bundle sefor R, noted asS(R), contains all the argumentation lines frdog
rooted inR. From a bundle sef(R), the dialectical tre€ (R) is constructed.

Definition 7 (Dialectical Tree). Given an ontology C £, a dialectical tree7 (R)
rooted inR € Ay is determined by the bundle s8{R) C Ly such that an argumeigt
in7(R) is: (1) anode iff C € A, foranyX € S(R); (2) achild of anodeBin T (R)
iff C e\ BeX,forany{\ N} C S(R),andNT[B] = A(C). Theleavesin 7 (R)
are the leaves of each line (R ). The domain of trees frotly is noted asT 5.

Example 4.

Given an ontology” C £, and the bundle sef(R) C Ly deter-
mining the dialectical tre§ (R) € Ty (depicted on the right) such
thatS(R) = {)\1, )\2, )\3}, where); = [R, 81,85], Ao = [R, Bl, BQ],
and\s = [R, Bs, B4, Bs], are three acceptable, maximally conser
tive, and non-redundant lines. Observe that argunSgns a child of A; 3(5/
B, in T(R) given that\! [B,] = A (B,) (see Def. 7). S

We write A € 7(R) when\ is aline in7(R). GivenX C L, a query supporter
R € Ay is finally accepted (or warranted) by analizing the diatadtiree7 (R).
To such end, anarking functionmart : Ay x Ly x Txy—M assigns to each ar-
gumentin7 (R) a mark fromM = {D, U}, whereD/U means defeated/undefeated.
The mark of an inner node iff (R) is obtained from its childreni.g., its defeaters)
by following a marking criterion We adopt a skeptical marking criterion (as used
in DELP [9]) defined as: (1) all leaves are mark€dand (2) every inner nod8 is
markedU iff every child of8 is markedD, otherwise3 is markedD. Thewarranting
functionwarrant : Ty —{true, false} determines the root's acceptance verifying
wartant(7 (R)) = true iff maré(R,\,7(R)) = U. Hence,R is warrantedfrom
T(R) iff warvant(7 (R)) = true. In such a case] (R) is referred asvarranting
tree These notions are illustrated with arguments painted ay/grhite standing for
D/U marks. For instance, in Ex. &R is defeated and thuB(R) is non-warranting.

Definition 8 (Argumentative Entailment). GivenX' C £ and a querya € L. U
{q(Z)}; X R « iff there is a warrantedv-supporterR € Ay. If there is no warranted
a-supporter fromAy; thena is not entailed by, noted asY ¢ «.

Theorem 1. Given an ontology’ C L, if X' is coherent and consistent then for any
querya € Lo U{g(z)}itholdsX = aiff X R a.

Example 5.To analyze whether a given presidential formula is reliale study how
candidates voted for the last most relevant laws in the paatd, deciding in this manner
whether a pair of candidates might be coalitionable. Farriretter, we consider a role
P, standing for presidential formula such that for anyy) € PZ, individual z is
candidate for president andfor vice-president; rol€' (coalitionable candidates) such
that for any(z, y) € C7, individualz andy are two politicians that are assumed to agree
according to their ideology on the most important nationatters; concepts andZ’,
standing for the two most relevant laws being promulgedrdythe last presidential
period such that € L7 (resp.,a € L'?) identifies the politician that voted in favor of
theL'’s (resp,L’’s) promulgation; concept;, standing for one of the most controversial



articles fromL'’s promulgation such that € L? identifies the politician that voted in
favor of L;. The ontologyX € ALCNH ™' will contain axiomsP C C' (every
presidential formula is coalitionable); C C'~ (every coalitionable pair of politicians
is commutative);L; = L (politicians in favor of articlel,; should have voted in favor
of law L); VP.T C= 1P andVP~.T C= 1P~ (a presidential formula should be
unique and the candidates should have the expected posidicitly announced, and
candidates presented in several presidential formulaass@med to be less reliable);
andvVC.L C L andVC.L' C L' (politicians agreeing il or L' are coalitionable).
The 2’s ABox will include P(a,b), P(a,c), P(d,e), =C(d,e), L(a), =L(b), L1(b),
-L'(a), L'(c), where individuals, b, ¢, d, e, are currently active politicians.

Checking the reliability of the presidential formuld(a,b) implies finding out
whetherX | P(a,b) holds. FromAsy, R = ({P(a,b)},{P(a,b)}) is a query sup-
porter,and3; = ({PC C,C C C~,VC.L C L,L(a),~L(b)}, {—-P(a,b)}), Bs =
({L1(b), L1 T L}, {L(B)}), Bs = ({P(a,c),YP.T C= 1P}, {~P(a,b)}), Bs =
{pPCcCvC.L CL L (a),L'(c)}, {—-P(a,c)}), andBs = ({P(d,e),~C(d,e)},
{P(d,e),~C(d,e)}), determine the tre@ (R) depicted in Ex. 4. Sinc& (R) is non-
warranting andR is the only query supporter, we conclulié P(a,b).

4 How Feasible is this Non-Standard DL-Reasoning Methodolgy?

To implement our argumentation-DL machinery two questioesd to be addressed:
how to construct (1) an argument supporting a query, anch@yefeaters of a given
argument. For (1) techniques upon the reasoning procedutbeoDL at issue may
be used. Some works on this matter are [11]4i4C) and [3] (in£L). Here, we ad-
dress (2) by relying on MUPS (minimal unsatisfiability-pgasng sub-TBoxes) and
MIPS (minimal incoherence-preserving sub-TBoxes) [12tSstructures are defined
by following an extension of the standadi_C-tableau [2] applied to unfoldabldLC.
This algorithm is referred by the authorsagom pinpointingNext we introduce the
intuitions to calculate MUPS, and afterwards extend theprépose an algorithm for
recognizing defeaters of a given argument. We will rely upofolded ALC ontologies.

Unsatisfiability of a concept is detected with a labelledissted tableau. A labelled
tableau is a set of labelled branches. A labelled branch &t afdabelled formulas
of the form(a : C)X, wherea is an individual name( is a concept, and is the
label containing a set of axioms which leads to the inferefdbde formula(a : C).
A formula can occur with different labels on the same brarchabelled tableau is
saturated if all its branches are closed. A branch is closgedontains a clashi,e., if
there is at least one pair of formulas with contradictoryra@mn the same individual.
Hence, the information on which axioms are relevant for toeure (clash) of a branch
is contained in the labels of contradictory formulas. Fatamce, a branch is closed
if there is some paifa : A)* € Aand(a : =A)Y € A, whereA is an atomic concept.
That is, axioms fromX andY lead to clashes.e., X UY is unsatisfiable.

The closure of a branch is pursued by applying expansios wmitgch progressively
unfold axioms in a lazy manner. An example of expansion rukr @ branch\ is, If
(a : A)X € XandA C C € X then)\ is replaced in the tableaux byu {(a :
C)XWAECH | Additional branches may be progressively included in tigetaux by



following a disjunctive rule which operates over formulg®l(a : C; M Cs). (For an
account of the complete set of expansion rules, pleasetcefe?].) Once no more rules
can be applied, a closed tableau is obtained through the sktlosed branches.

MUPS are constructed by building a labelled tableau for adranitially con-
taining only (o : A)?, and by applying aninimization functionp which also starts
in (a : A)%. As expansion rules are applied to close the tableau, difterules also
expand the minimization function. The idea is to obtain theakest conjunction of
axiomsay A ... A ay,, calledprime implicant implying ¢. This is built from labels
of contradictory formulae in each closed branch of the &@ine hencey;, € X, for
any1l < i < n. As ¢ is a minimization function every implicant @f is also a min-
imization function. Finally, the prime implicant is also @mmization function. This
means thatd is unsatisfiable whea; A ... A «, is true, or equivalently is unsatis-
fiable wrt. the set\f = {ay, ..., ay,}, which is minimal since it comes from a prime
implicant (smallest conjunction of axioms implying. The MUPS forA wrt. X' is
mups(A, X) = {M C X|Ais unsatisfiable in/ but A is satisfiable in any/’ C M}.

To calculate the defeaters of a given argum@ntve first calculatenups(A, X)
where A T C € bo(B). For any axiomA’ C C’ € bd(B) which was not con-
sidered by the process to close the tableial, 6ot included in any label), a new
MUPS mups(A’, X) should be obtained. (Only in the worst case a MUPS for every
axiom within B should be constructed.) Once all the necessary MUPS ar@etta
we join them into a setwupsArg(B, X) = Usccepo(s) mups(4, X). Finally, for any
M € mupsArg(B, X)), itholdsM \ bd(B) is the body of a minimal undercut &, con-
forming definitions 1, 3, and 4 (an mcu conforming Def. 5 careasily obtained by ac-
commodating the claim). In order to find inconsistenciesoelincoherencies.e., to
find also contrary membership assertions form the ABox, thggral MUPS algorithm
should consider additional expansion rules, thus turnitP8 from sub-terminologies
to sub-ontologies. This assumption should not affect theviing analysis.

Calculating MUPS relies on the construction of a minimiaatfunction from a
tableau. Building it in a depth-first way allows to keep onegt branch in memory
at a time. Hence, the complexity class of the MUPS problemespionds to that of
the satisfiability checking in unfoldabldLC, i.e, PSPACE. Since the size of prime
implicants may be exponential wrt. the number of axioms enTBox, approximation
methods could avoid the construction of fully saturatedeainx to reduce the size of
the minimization functions. In addition, in order to rendéithe necessary defeaters of
a given argumenB, the construction of several MUPS could be necessary. Hexvev
the unfolding process would find (in general) most axioms.

Theorem 2. Calculating all the defeaters of a giveALC argument is in PSPACE.

5 Conclusions and Future Work

A general DL-argumentation machinery was proposed. Thig oetology reasoner
provides argumentation techniques to reason over indensisncoherent ontologies,
and behaves as a classical ontology reasoner when congjdennsistent ontologies
(Theorem 1). A similat4d£C-argumentation framework (without cqs support) was pro-
posed in [13], where difficulties regarding negation of Dtieens were addressed by



specifying specialized semantics enriched witm, andv, to define defeaters. From
our viewpoint, this would require to extend widely accepte@C-reasoning techniques
with classic logic characteristics in order to build argumsen practice.

As far as classic DL-reasoning methodologies are reusedrtstiict machineries
for DL-argumentation, argumentation will provide a usediiernative to reason over
inconsistent ontologies —the complexity of the argumérgatasoner will depend on
that of the adopted DL-reasoner. Nonetheless, certaird@serin the complexity should
be presumed when working with huge dialectical trees, stbéishing a relation to the
“level of inconsistency” (number of contradictory axiong)the queried ontology.

The complexity analysis of answering whether a querig accepted by the DL-
argumentation machinery requires to construct and markliddectical tree rooted in
ana-supporter. In unfolded! £C, this problem approaches to that of calculating MIPS
from all MUPS. Moreover, since the number of defeaters faraglete dialectical tree,
may grow exponentially in the number of axioms of the TBox,heéeve that the con-
struction of the tree in unfolded £C would be at least in EXPTIME (as satisfiability in
ALC). A deep analysis on this matter is underway. Future work plgsues complete
algorithms for4£C and most importantly, for efficient DL families as DL-Litecé L.

References

1. Baader, F.: Terminological Cycles in a Description Logith Existential Restrictions. In:
IJCAI. pp. 325-330 (2003)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, Delf3thneider, P. (eds.): Description
Logic Handbook: Theory, Implementation and Applicatioran@bridge University Press,
Cambridge (2003)

3. Baader, F., Pefaloza, R., Suntisrivaraporn, B.: Pinjpgjrin the Description Logic EL. In:
Description Logics (2007)

4. Besnard, P., Hunter, A.: A Logic-based Theory of Dedecfivguments. Artif. Intell. 128(1-
2), 203-235 (2001)

5. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, Ms&i, R.: Tractable Reasoning
and Efficient Query Answering in Description Logics: The Dite family. JAR 39(3), 385—
429 (2007)

6. Cecchi, L., Fillottrani, P., Simari, G.: On the complgxitf DeLP through game semantics.
In: NMR. pp. 386—-394 (2006)

7. Dung, P.: On the Acceptability of Arguments and its Fundatal Role in Nonmonotonic
Reasoning and Logic Programming amgberson Games. Artif. Intell. 77, 321-357 (1995)

8. Flouris, G., Huang, Z., Pan, J., Plexousakis, D., Wachelndonsistencies, Negations and
Changes in Ontologies. In: AAAI. pp. 1295-1300 (2006)

9. Garcia, A., Simari, G.: Defeasible Logic Programming:Agumentative Approach. TPLP
4(1-2), 95-138 (2004)

10. Gémez, S., Chesfievar, C., Simari, G.: Reasoning wittnisistent Ontologies through Ar-
gumentation. Applied Artificial Intelligence 24(1&2), 16248 (2010)

11. Meyer, T., Lee, K., Booth, R., Pan, J.Z.: Finding Maxilp&atisfiable Terminologies for
the Description Logic ALC. In: AAAI (2006)

12. Schlobach, S., Cornet, R.: Non-Standard Reasonindcgsrior the Debugging of Descrip-
tion Logic Terminologies. In: IJCAI. pp. 355-362 (2003)

13. Zhang, X., Zhang, Z., Lin, Z.: An Argumentative Semasfiar Paraconsistent Reasoning in
Description Logic ALC. In: Description Logics (2009)



