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Abstract

Model-Based Contractions are a formalism –based on
model-theoretic semantics– which characterizes an op-
eration that modifies a knowledge base to avoid the sat-
isfiability of a given expression. In the context of ontol-
ogy revision, model-based contractions are a functional
component that yields an ontology ready to evolve con-
sistently. In this work we formalize the theory for con-
tractions providing a model, variations, and their ax-
iomatic characterization. Afterwards an algorithm to-
wards its realization is proposed. Such algorithm has no
further impact in computability, since it works on top of
the satisfiability checking of the incoming information.

Introduction
We propose an ontology change operator which models the
dynamics of the knowledge represented by ontologies. Such
operator allow the addition of axioms (terminological de-
scriptions) and assertions to the respective ontology in a con-
sistent manner. In this sense, we follow consistency by as-
suming the change operator to be applied to ontologies for
which consistency is a critical matter due to either, the do-
main they model, or the systems referring to them. Because
of its highly reusable distributed nature, this kind of ontolo-
gies should pass only through consistent intermediate states
of an evolutional process.

For an ontology change operation, it is important to fol-
low the minimal change principle. This is related to the
avoidance of instance data loss, i.e., assertions, whenever it
is possible. When some change is stated, as a result of that,
some axioms may end up unsatisfiable, turning the ontology
to incoherency. Here another important issue is unveiled re-
garding how the old and the new information is considered.

For the sake of ontology evolution, the new information is
some new appreciation of the world produced by a change in
the shared domain, or in its conceptualization. This means
that the new knowledge should be prioritized over the older.
Therefore, when some axiom experiences satisfiability loss
it should be considered outdated wrt. the current state of the
shared domain. Hence, its condition is analyzed in order
to automatically restore its satisfiability, unless the ontology
engineer interprets it needs to be treated separately.
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Therefore, realization of the ontology change operation
will rely on two sub-operations, the first one, namely model-
based contractions, will modify the ontology accordingly
to the incoming information such that it could be consis-
tently and coherently incorporated later, whereas the latter
sub-operation1 will restore the satisfiability of the outdated
axioms in order to coherently reincorporate them along with
the new information in a consistent manner.

In this work, we formally define the model-based con-
traction operator, providing its axiomatic characterization,
and an algorithm for its realization. Consequently, as de-
scription logic reasoners usually deal with huge ontologies,
it is of utmost importance to provide an algorithm capable
of reusing previous computations. This means that such al-
gorithm should work on top of the satisfiability checking of
the incoming information.

Description Logics Brief Overview
The following constitutes a very brief overview of the de-
scription logics (DLs) used in this paper, for more detailed
information refer to (Baader et al. 2003). An interpretation
I = (ΔI, ·I) consists of a nonempty domain ΔI , and an
interpretation function ·I that maps every concept to a sub-
set of ΔI , every role to a subset of ΔI × ΔI , and every
individual to an element of ΔI .

The basic description language AL is formed by con-
cept descriptions according to the syntax C, D −→
A|⊥|�|¬A|C �D|∀R.C|∃R.� where A is an atomic con-
cept, R is an atomic role; and the interpretation function ·I
is extended to the universal concept as �I = ΔI ; the bot-
tom concept as ⊥I = ∅; the atomic negation as (¬A)I =
ΔI\AI; the intersection as (C �D)I = CI ∩DI ; the uni-
versal quantification as (∀R.C)I = {a ∈ ΔI|∀b.(a, b) ∈
RI → b ∈ CI}; and the limited existential quantification as
(∃R.�)I = {a ∈ ΔI|∃b.(a, b) ∈ RI}.

More expressive languages are possible by adding dif-
ferent constructors to AL like union of concepts (identi-
fied as U), interpreted as (C �D)I = CI ∪ DI; full ex-
istential quantification (E), interpreted as (∃R.C)I = {a ∈
ΔI|∃b.(a, b) ∈ RI ∧ b ∈ CI}; full negation or complement
(C), interpreted as (¬C)I = ΔI\CI; and more. Extend-

1The formalizations for the second sub-operation and the ontol-
ogy change operation are out of the scope of this work.



ing AL by any of the above yields a particular language re-
spectively named by a string of the form AL[U ][E ][C]. DLs
considered in this work follow such kind of specifications.

A knowledge base (KB) is a pair Σ = 〈TΣ,AΣ〉, where
TΣ represents the TBox, containing the terminologies (or
axioms) of the application domain, and AΣ, the ABox,
which contains assertions about named individuals in terms
of these terminologies. Regarding the TBox TΣ, axioms are
sketched as C � D and C ≡ D, therefore, an interpretation
I satisfies them whenever CI ⊆ DI and CI = DI respec-
tively. An interpretation I is a model for the TBox TΣ if I
satisfies all the axioms in TΣ. Thus, the TBox TΣ is said to
be satisfiable if it admits a model. Besides, in the ABoxAΣ,
I satisfies C(a) if a ∈ CI , and R(a, b) if (a, b) ∈ RI . An
interpretation I is said to be a model of the ABox AΣ if ev-
ery assertion of AΣ is satisfied by I . Hence, the ABox AΣ

is said to be satisfiable if it admits a model. Finally, regard-
ing the entire KB, an interpretation I is said to be a model
of Σ if every statement in Σ is satisfied by I, and Σ is said
to be satisfiable if it admits a model.

In the rest of this article, we write L to identify some
specific AL[U ][E ][C] DL. When necessary, we will make
difference in a logic L between the representation for ax-
ioms, writing LT , and the L logic for assertions, noted as
LA. A KB contains implicit knowledge that is made ex-
plicit through inferences. The notion of semantic entailment
is given by Σ |= α, meaning that every model of the KB
Σ ⊆ LT × LA is also a model of the sentence α ∈ L.

(Semantic Entailment) Σ |= α iff M(Σ) ⊆M({α})
The semantics of an ABox in DLs (as every ontologi-

cal language), are characterized by the open world assump-
tion (OWA), this means that absence of information in an
ABox means nothing but lack of knowledge, in contrast to
instances in databases where absence of information is in-
terpreted as negative information.

Remark 1 (Restriction Towards a Practical Approach)
For some description languages (like ALC), every satisfi-
able KB is known to have infinitely many models most of
which are infinite. In order to provide a practical approach,
we will restrict this work to finite sets of finite models.
Besides, unique name assumption (UNA) is also assumed in
order to assure that each individual (in the world) will map
to a unique individual name. Finally, we will assume that
the representation of every KB taken into consideration is
made with an acyclic TBox.

Given the assumptions above, a query α to the KB Σ,
noted as Σ |=? α, is solved by checking if every element I ∈
M(Σ) (i.e., every model of Σ), is also a model of α. If this is
true, the query is said to be satisfied, namely Σ |= α, and α
inferred, being YES the answer. To the contrary, if Σ |= ¬α,
the query is not satisfied, being NO its answer. Finally, if
none of the previous are verified, i.e., Σ �|= α and Σ �|= ¬α,
then the query is answered as UNKNOWN.

Intuitions for Ontology Change Operations
Given a DL L, a consistent KB Σ ⊆ LT × LA and a satis-
fiable sentence ϕ ∈ L, we want Σ to evolve towards a new

KB ΣR ⊆ LT × LA such that ΣR |= ϕ, or equivalently,
by reduction to unsatisfiability, ΣR ∪ {¬ϕ} has no models.
An intuitive solution is to avoid the inference of ¬ϕ such
that the further inclusion of ϕ would end up in a consistent
KB. Therefore, this change operation would be composed by
two main sub-operations, passing from satisfaction of ¬ϕ,
to uncertainty, and afterwards to satisfaction of ϕ. From a
model-theoretic viewpoint (see Fig. 1), this is analogous to
pass from a state in which every model satisfies ¬ϕ, through
an intermediate state in which some models does not satisfy
¬ϕ, to a final state in which no model satisfies ¬ϕ, exactly
as reduction to satisfiability requires.
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Figure 1: The operation CΣ(ϕ) and its two sub-operations.

As stated in the introductory section, we want to gener-
ate consistent outcomes from each sub-operation, preserv-
ing coherency and consistency of the final evolved KB. In
this sense, as an effect of the first sub-operation, if an axiom
is predicted to become unsatisfiable –considered along with
the incoming sentence ϕ– it would be eliminated by the first
sub-operation. Afterwards, the second sub-operation would
repair such axioms and incorporate them along with ϕ to the
resultant KB.

Satisfiability restoration of a given axiom may be
achieved by considering its maximal consistent fragment.
For this matter, we can take advantage of the advances
achieved in the last years in the area of ontology debugging
(Schlobach & Cornet 2003; Kalyanpur et al. 2006).

After the first sub-operation is applied, a second sub-
operation consistently adds a set Φ = {ϕ} ∪ TZ , where
ϕ stands for the original expression, and TZ , for the set of
repaired axioms eliminated from Σ. Finally, the ontology
change operation would be: CΣ(ϕ) = (Σ�¬ϕ)⊕Φ, where
“�” refers to the first sub-operation, namely model-based
contraction. The second sub-operation “⊕” is out of the
scope of this paper, and is part of our future work to for-
malize the specification of the ontology change operator C.

The following example shows, in an intuitive manner,
how the ontology change operation would operate.

Example 1 Let ΔI = {a} be a domain for the KB Σ =
〈{C � D1, D3 � C � ¬D2}, {C(a), D1(a), ¬D2(a),
D3(a)}〉. We want to consistently integrate the axiom C �
D1 �D2 to the KB. Since C � D1 is part of the TBox, the
sentence ϕ to incorporate will be just C � D2. Thus, by ef-
fect of an ontology change operation CΣ(C � D2), we want
to achieve a KB ΣR such that ΣR |= ϕ.

By reduction to unsatisfiability, ΣR ∪ {(C � ¬D2)(x)}
for a free variable x, should have no models. Consequently,



we will first generate a contracted KB Σ′ = Σ � (C �
¬D2)(x) such that Σ′ |= ¬ϕ is not verified. Two min-
imal proofs2 arise for ¬ϕ: {C(a),¬D2(a)} and {D3 �
C �¬D2, D3(a)}. Suppose now ¬D2(a) is retired from the
former set, and the axiom D3 � C � ¬D2 from the latter –
given that it becomes unsatisfiable if considered along with
C � D2. Hence, after the contraction “�”, the resultant
KB would be Σ′ = 〈{C � D1}, {D1(a), C(a), D3(a)}〉.

From the second stage of the ontology change operation
“C”, the sentence D3 � C � ¬D2 needs to be repaired. A
possible solution may be to change it to D3 � C.3 Now,
by effect of the final sub-operation “⊕”, we can consistently
add the sentence ϕ along with the repaired axiom. Hence,
the final KB would be ΣR = 〈{C � D1 � D2, D3 � C},
{D1(a), C(a), D3(a)}〉.

Model-Based Contractions
Belief bases are sets of formulae not closed under logical
consequence, containing implicit beliefs that are made ex-
plicit through inferences. Conforming the AGM model (Al-
chourrón, Gärdenfors, & Makinson 1985) of theory change,
Kernel Contractions (Hansson 1994) are a construction for
contracting belief bases based on the following intuition: in
order to avoid the KB to infer a given sentence α, at least
one element of each α-kernel (minimal α proof) is removed.
Afterwards, no proof for α will appear in the resultant KB.

Applying directly kernel contractions to ontology lan-
guages –considering open-world semantics– important con-
cerns appear. For instance, kernel contractions are not de-
signed to reason following case analysis as done by semantic
entailment. This problem is made clear below.

Example 2 Let Σ = 〈∅, {SU (a, b), SU (b, c), SU (c, d),
Re(a), ¬Re(c), ¬Re(d)}〉 be a KB where SU and Re stand
for “supervised-by” and “researcher”, respectively. Now
suppose a new regulation poses that no academic researcher
might be supervised by a non-researcher. Therefore, we
would need to provoke the ontology to evolve by an opera-
tion CΣ(ϕ), where ϕ = Re � ∀SU .Re. In consequence, we
should first apply a model-based contraction Σ � α, where
α = (Re �∃SU .¬Re)(x), avoiding any certainty about the
existence of some researcher who is supervised by a non re-
searcher.

Assuming a domain ΔI = {a, b, c, d}, the only possibil-
ity to answer α is by case analysis on the interpretation I of
the individual name b regarding the concept Re. That is, in
case b ∈ ReI , the related minimal proof would be {Re(b),
SU (b, c),¬Re(c)}, whereas if b ∈ ¬ReI , the related min-
imal proof would be {Re(a), SU (a, b),¬Re(b)}. Finally,
the query Σ |= α is satisfied.

Queries in such situations cannot be correctly answered if
case analysis is not performed. In such a case, kernel con-
tractions would not recognize any α-kernel and therefore,
the inference of α could not be avoided. An alternative for
it could be its redefinition by use of the semantic entailment

2Minimal proofs will be formally defined later.
3A brief discussion on this matter is given by the end of this

article.

“|=”, but again some new problems would appear since it
would no longer find minimal proofs but minimal sets. Each
of those sets will contain an incomplete proof considering
an individual a ∈ CI and the opposite proof for the case in
which a ∈ ¬CI .

Example 3 (Ex. 2 cont.) A set K = {SU (a, b), SU (b, c),
Re(a), ¬Re(c)} is a minimal subset K ⊆ Σ entailing α,
i.e., Σ |= α.

Example 4 Given Σ = 〈∅,AΣ〉, where AΣ = {SU (a, b),
SU (b, c), SU (c, d), SU (e, b), SU (b, f ), Re(a), Re(e),
¬Re(c), ¬Re(d), ¬Re(f )}, and the sentence α = (Re �
∃SU .¬Re)(x). Considering a domain ΔI = {a, b, c, d, e,
f}, four different minimal sets for α appear:
K1 = {SU (a, b),SU (b, c),Re(a),¬Re(c)}
K2 = {SU (a, b),SU (b, f ),Re(a),¬Re(f )}
K3 = {SU (e, b),SU (b, c),Re(e),¬Re(c)}
K4 = {SU (e, b),SU (b, f ),Re(e),¬Re(f )}
From the previous examples, in order to avoid Σ |= α we

may eliminate at least one belief from each set K such that
no minimal set for α would exist. Although this method
“seems to successfully4” achieve a contraction operation,
it is not so reasonable since this would require exponential
space to compute. That is, O(mn), where m is an average of
minimal α-proofs valid in each model I ∈ M(Σ), and n is
the cardinality ofM(Σ). Hence, adapting the classical the-
ory of kernel contractions to ontology languages, by simply
changing its classical consequence operator “�” to semantic
entailment, seems to be quite unnatural and very inefficient.

Contractions Machinery
Our interest relies on a construction requiring polynomial
space to compute. That is, a different construction is needed
over which some new methodology is to be applied. This
construction should rely on the KB and some sole model.
In consequence, the methodology would run in polynomial
space wrt. to the number of minimal α-proofs appearing in
the construction determined by an appropriate model. Such
an approach would allow to operate the change in a more
efficient, intuitive, and natural manner; irrespective of con-
sidering a possibly infinite setM(Σ).

In general, our proposal is based on a similar intuition
to that of Kernels, but since semantic entailment considers
an inference by verifying its satisfiability in every model,
minimal proofs for α should be found in every “extension”
of the KB Σ. Such KB extension, namely ΣI , will contain
the KB Σ extended by the assumptions made in the related
model I ∈ M(Σ).

Definition 1 (KB Extension “ΣI”) Let L be a DL, Σ ⊆
LT × LA, a knowledge base such that Σ = 〈TΣ,AΣ〉, and
M(Σ), its set of models. The finite Σ extension by a finite
model I ∈ M(Σ) is a KB ΣI = 〈TΣ,AΣ ∪ SΣI 〉 where:

SΣI = {C(a)|∀a ∈ ΔI, where a ∈ CI and C(a) �∈ AΣ}∪
{R(a, b)|∀a, b ∈ ΔI , where (a, b) ∈ RI and

R(a, b) �∈ AΣ}.
4It will be clear later that such methodology does not guarantee

success.



The set SΣI is referred as “set of assumptions” determined
by the finite model I.

From the definition above, the extended ABox AΣI of
ΣI is composed by two different kinds of assertions: fac-
tual assertions, i.e., those contained in AΣ; and non-factual
assertions, or so called set of assumptions SΣI .

Whenever Σ |= α, for a KB Σ and a sentence α, we may
identify different explanations for α conformed as minimal
sets, inside some KB extension from a model I.

Definition 2 (Extended α-Kernel “EαK”) Given a DL L,
a KB Σ ⊆ LT × LA, its extension ΣI = 〈TΣ,AΣ ∪ SΣI 〉
and a sentence α ∈ L. An extended α-Kernel (for short
EαK), is a KB K = 〈TK, FK ∪ SK〉 verifying the following
conditions:

(1) K ⊆ ΣI , i.e., TK ⊆ TΣ, FK ⊆ AΣ, and SK ⊆ SΣI .

(2) K |= α.
(3) There is no K′ ⊂ K such that K′ |= α.

From Def. 2, given an EαK K = 〈TK,AK〉, the factual
assertions FK ⊆ AK may be identified as AΣ ∩ AK. The
set containing every EαK in a KB extension is defined as
follows.

Definition 3 (Set of EαKs “ΣI⊥⊥α”) Given a DL L, a KB
Σ ⊆ LT × LA, and a sentence α ∈ L. The set ΣI⊥⊥α ⊆
2LT ×LA is the set of every EαK in the KB extension ΣI .

Different models may determine different sets of EαKs
for each associated KB extension, as is shown below.

Example 5 (Ex. 4 cont.) Consider I ∈ M(Σ) the model
generating the KB extension ΣI = 〈TΣ,AΣ ∪ SΣI 〉, where
SΣI = {}. Therefore, the related EαKs are the four Ki ⊆
ΣI detailed in Ex. 4. Later on, ΣI⊥⊥α = {K1,K2,K3,K4}.

Consider now, a different model I ′ = (ΔI′
, ·I′

), where
ΔI′

= ΔI , and b ∈ ¬ReI . Then, for the related KB exten-
sion ΣI′ = 〈TΣ,AΣ ∪ SΣI′ 〉, it follows SΣI′ = {¬Re(b)}.
Finally, ΣI′⊥⊥α = {{Re(a), SU (a, b), ¬Re(b)}, {Re(e),
SU (e, b), ¬Re(b)}}.

We identify as complete EαK to an EαK containing all the
necessary knowledge to infer α with no need to make case
analysis, i.e., no extra assumptions are required to be done.
From the example above, each EαKin ΣI′⊥⊥α is complete.

We look for a KB extension in which every complete EαK
is contained. In this sense, we can apply a methodology
running in polynomial space wrt. to the number of EαKs in
the KB extension. It is clear that not every model allows to
determine such a KB extension. Thus, it is needed to extend
the KB regarding some appropriate model I.

In this sense, the appropriate KB extension may be de-
termined by upper and lower bounds. That is, the KB ex-
tension should contain only the necessary non-factual asser-
tions to (completely) explain α (i.e., the upper bound); but in
the other hand, every EαK should be completed using only
non-factual assertions from the KB extension (i.e., the lower
bound). In the same manner, the model I determining such
a KB extension should also consider an appropriate mini-
mal domain. That is, the smallest domain which suffices to
identify every complete EαK.

Definition 4 (α-Minimal Extension & α-Minimal Model)
Given a sentence α, a KB Σ, and a model I ∈ M(Σ). The
KB extension ΣI = 〈TΣ,AΣ ∪ SΣI 〉 is α-minimal iff it
follows:

(1) SΣI =
⋃

K∈(ΣI⊥⊥α) SK, and

(2) there is no I ′ ∈ M(Σ), where ΔI ⊆ ΔI′
, such that for

the related KB extension ΣI′ it holds (1) and ΣI ⊂ ΣI′ .

Consequently, the α-minimal model I is noted as Iα, and
the associated α-minimal extension ΣI is referred as ΣIα .

Proposition 1 If (ΣIα ⊆ ΣI) then (ΣIα
⊥⊥α = ΣI⊥⊥α).

In particular, we are interested in the set of EαKs
“ΣIα

⊥⊥α” determined by an α-minimal model I α. In the
following example it is shown how the structure proposed
so far is built. Note that, although more than one model is
considered in the examples (and thus, more than one KB ex-
tension), the theory requires just one single model.

Example 6 Consider Σ = 〈{C � D}, {C(a), D(b)}〉, α =
D(a), and models of domain {a, b}, determining: SI1 =
{C(b), D(a)}, and SI2 = {¬C(b), D(a)}. Thus, for the KB
extensions Σ1 = 〈{C � D}, {C(a), D(b), C(b), D(a)}〉,
and Σ2 = 〈{C � D}, {C(a), D(b),¬C(b), D(a)}〉, their
respective sets of EαKs will be Σ1

⊥⊥D(a) = {〈{C � D},
{C(a)}〉,〈{}, {D(a)}〉} = Σ2

⊥⊥D(a).
Note that there is just one α-minimal extension ΣIα =
〈{C � D}, {C(a), D(b), D(a)}〉. Hence, its related set of
EαKs ΣIα

⊥⊥D(a) coincides with Σ1
⊥⊥D(a) and Σ2

⊥⊥D(a).

Example 7 (Ex. 2 cont.) Let Iα
1 , Iα

2 ∈ M(Σ) be the two
α-minimal models with domain ΔI , such that b ∈ ReIα

1 and
b ∈ ¬ReIα

2 . One EαK appears in each α-minimal exten-
sion: K1 = 〈{}, {SU (b, c), ¬Re(c), Re(b)}〉, K1 ⊆ ΣIα

1
.

K2 = 〈{}, {Re(a), SU (a, b)}∪ {¬Re(b)}〉, K2 ⊆ ΣIα
2
.

Finally, the related sets of EαKs are: ΣIα
1
⊥⊥α = {K1}, and

ΣIα
2
⊥⊥α = {K2}.

In order to avoid α inferences, we need to analyze every
EαK in some set ΣI⊥⊥α. A function “γ”, namely selection
function, determines the appropriate model from where the
KB extension and the set of EαKs are built. Such function
should apply the restrictions in Def. 4 guided by some model
preference criterion, namely “≺”, used to univocally deter-
mine the “most profitable” α-minimal model.

Definition 5 (Model Selection Function “γ”) Let Σ be a
KB, α, a sentence, and “≺”, a model preference criterion.
A function “γ” is a “model selection function” determined
by “≺” iff γα(Σ) = Iα ∈ M(Σ), where Iα is an α-
minimal model and for no other model I ∈ M(Σ), it fol-
lows I ≺ Iα. The selected model Iα will be noted as Iγ .

As stated before, the intuition behind a model-based con-
traction is to impact the cardinality of the set of models sat-
isfying the KB such that some new admitted model will fail
to satisfy α in the resultant KB. For this matter, we will gen-
erate the set of EαKs ΣIγ ⊥⊥α of the KB extension obtained
from the model I γ selected by the function “γ”. Afterwards,
we will define a mapping “σ” from the set ΣIγ ⊥⊥α to a sub-
KB to be further eliminated from the original KB.



In this sense, two levels of deletions are to be considered:
(1) axioms, or (2) assertions supporting the inference of α
from every EαK in the selected KB extension. The foun-
dations of such kind of contractions have been explained
before: axioms are considered outdated and assertions are
chosen when no axiom is considered in the EαK.

Definition 6 (Model Incision Function “σ”) Let L be a
DL, Σ ⊆ LT × LA, a KB, α ∈ L, a sentence, Iγ , the
model selected by the model selection function “γ”, and
σ : 2LT ×LA −→ LT × LA, a function mapping from
(ΣIγ ⊥⊥α) to a KB 〈Tσ,Aσ〉. Then, “σ” is a “model inci-
sion function” iff it verifies:

(1) σ(ΣIγ ⊥⊥α) ⊆ (
⋃

K∈(ΣIγ
⊥⊥α)K) ∩ Σ.

(2) For all EαK K ∈ (ΣIγ ⊥⊥α) it follows:
a) TK ⊆ Tσ, and
b) if TK = ∅ and FK �= ∅ then FK ∩ Aσ �= ∅.
Note that, from Def. 6, the fact of considering assertions

only when no axiom exists, may be used to specify the
model preference criterion “≺” from Def. 5. Therefore, an
option to identify the “most profitable” α-minimal model
may be to analyze which Iα leads to the KB extension with
less EαKs K verifying TK = ∅. This would avoid instance
data loss, passing more axioms to be debugged by the sec-
ond change sub-operation.

Definition 7 (Model-Based Contraction) Let L be a DL,
Σ ⊆ LT × LA, a KB, α ∈ L, a sentence, ΣIγ , the
KB extended through the selected model I γ; and “σ”, a
model incision function. The operator “�σ”, referred as
model-based contraction determined by “σ”, is defined as
Σ �σ α = Σ\σ(ΣIγ ⊥⊥α).

Finally, “�” is a “model-based contraction operator” for
Σ iff there exists a model incision function “σ” such that
Σ � α = Σ �σ α for all sentence α.

Example 8 (Ex. 6 cont.) From Def. 5 we have only one α-
minimal model Iα = Iγ determining ΣIγ . Later on, there
are two EαKs in ΣIγ ⊥⊥α, from which one is not considered
by the incision function given that its related sets TK and
FK are empty. Finally, since the other EαK considers termi-
nologies (axioms), from Def. 6 we have that σ(ΣIγ ⊥⊥α) =
〈{C � D}, {}〉. Finally, the resultant KB would be Σ′ =
Σ � D(a) = Σ\σ(ΣIγ ⊥⊥D(a)) = 〈{}, {C(a), D(b)}〉.

Axiomatic Characterization
As the basis for the axiomatization, we extend the basic pos-
tulates for bases given in (Hansson 1999).

(Inclusion) Σ � α ⊆ Σ.

(Success) 5 If �|= α then Σ � α �|= α.

(Core Retainment) 6 If β ∈ Σ and β �∈ Σ � α then there is
some H ⊆ ΣIγ such that H �|= α but (H ∪ {β}) |= α.

(Uniformity) For every H ⊆ ΣIγ it is verified that if H |=
α iff H |= β then Σ � α = Σ � β.

5We use |= α to denote α as tautological.
6When β is an axiom, (H ∪ 〈{β}, ∅〉) |= α follows; whereas

when β is an assertion, it follows (H ∪ 〈∅, {β}〉) |= α.

As is shown below, a model-based contraction operator
defined so far does not guarantee success.

Example 9 (Ex. 7 cont.) Suppose I γ = Iα
1 , thus ¬Re(c)

could be chosen by the incision “σ”. In such a case, the
resultant KB Σ′ would admit new models I ′ where c ∈ ReI′

.
Hence a new EαK will appear: H ∪ 〈∅, {Re(c)}〉, where
H = 〈∅, {SU (c, d), ¬Re(d)}〉, H ⊆ Σ′, but also H ⊆ Σ.

A contraction operation not guaranteing success was pro-
posed in (Fermé & Hansson 2001), but in the context of on-
tology evolution, we believe that success should be a must.

After a model-based contraction deletes some beliefs, it
may fail to guarantee success if some subset H ⊆ Σ along
with the negation of some beliefs chosen by “σ”, turns out
being a new α-proof in the resultant KB. These kind of sub-
sets are referred as shielding sets of information. Note that
a shielding set is also a KB.

For a shielding set H , it follows H ∪ 〈∅, Âσ〉 |= α, if Âσ

is a disagreement set of the assertions chosen by “σ”. Intu-
itively, a disagreement set negates some of those assertions
and keeps the rest of them as they are.

Definition 8 (Disagreement set) Given an ABox A, the set
δ(A) of disagreement sets Â is:

δ(A) = {Â �= A|∀β, β ∈ (A\Â) iff ¬β ∈ (Â\A)}

Note that a disagreement set Â may be also referred as a
disagreement ABox. Now we can formally define the shield-
ing sets by means of some disagreement set of AΣ.

Definition 9 (Shielding Set) A set H ⊆ Σ is a “shielding
set” iff H ∪ 〈∅, Â〉 |= α, for some Â ∈ δ(A), A ⊆ AΣ.

From an incision, some of its disagreements may “acti-
vate” a shielding set from Σ. In such a situation, the resul-
tant KB will keep the previous EαKs, and for the new trig-
gered models, a new EαK will appear. Thus, by restricting
incisions, we avoid any shielding set to be activated.

(Anti-Shielding) There is no H ⊆ Σ\σ(ΣIγ ⊥⊥α) such that
H ∪ 〈∅, Âσ〉 |= α, for some Âσ ∈ δ(Aσ).7

This property anticipates the generation of a new model
satisfying α in the resultant KB. If this happens, anti-
shielding restricts the incision function in order to avoid the
validity of that model. Hence, by considering a model-based
contraction determined by a model incision function which
satisfies anti-shielding, we guarantee success.

Definition 10 (Anti-Shielding Model-Based Contraction)
Let “�” be a model-based contraction operator determined
by a model incision function “σ”. The function “σ”
guaranties anti-shielding iff “�” is an “anti-shielding
model-based contraction operator”.

In the following example it is shown how a model incision
function is restricted by anti-shielding.

Example 10 (Ex. 9 cont.) Assume A = {¬Re(c)}, hence
δ(A) = {{Re(c)}}. Thus, given H ∪ 〈∅, Â〉 |= α, where

7Note that σ(ΣIγ
⊥⊥α) = 〈Tσ,Aσ〉.



Â ∈ δ(A), if Aσ = A, where σ(ΣIγ ⊥⊥α) = 〈Tσ,Aσ〉, it
is clear that “σ” does not guarantee anti-shielding. Finally,
σ(ΣIγ ⊥⊥α) = 〈{}, {SU (b, c)}〉. Hence, for the resultant
KB Σ � α = 〈∅, {SU (a, b), SU (c, d), Re(a), ¬Re(c),
¬Re(d)}〉 success is assured, i.e., Σ � α �|= α.

Proposition 2 An operator “�” is an anti-shielding model-
based contraction iff it guaranties success.

Proof: Given a KB Σ = 〈TΣ,AΣ〉, and a sentence α, we will
assume Σ |= α, and �|= α. Moreover, a new contracted KB
Σ′ = Σ � α is such that Σ′ = 〈TΣ′ ,AΣ′〉, where TΣ′ and
AΣ′ are the contracted TBox and ABox, respectively.

(⇒) For the first part, if “�” is an anti-shielding model-
based contraction then it guaranties success, let us assume to
the contrary that “�” does not guarantee success, i.e., Σ ′ |=
α. It follows that every model I ′ ∈ M(Σ′) satisfies α.
Thus, in every KB extension Σ′

I′α there exists at least one
EαK K = 〈TK, FK ∪ SK〉 such that H = 〈TK, FK〉, where
TK ⊆ TΣ′ and FK ⊆ AΣ′ , and a subset of assumed be-
liefs SK ⊆ SI′α , where I ′α ∈ M(Σ′). Let σ(ΣIγ ⊥⊥α) =
〈Tσ,Aσ〉 be the KB determined by model incision function,
such that Tσ ⊆ TΣ and Aσ ⊆ AΣ.

By Def. 7, Aσ �⊆ TΣ′ , then some Σ′
I′α may consider any

disagreement Âσ ∈ δ(Aσ), as well as Aσ itself. Therefore,
SK ⊆ Âσ holds for any Âσ ∈ δ(Aσ). Hence, K |= α,
and in particular H ∪ 〈∅, Âσ〉 |= α hold, contradicting the
anti-shielding postulate.

(⇐) For the opposite way, if “�” does guarantee suc-
cess then it is an anti-shielding model-based contraction. We
know that every I ∈ M(Σ) satisfies α, but since Σ′ �|= α,
there is some I ′ ∈ M(Σ′) which does not satisfy α. Thus,
it is plausible to assume that the interpretation I ′ ends up
being a model for Σ′ as a result of the contraction operation,
i.e., Σ\σ(ΣIγ ⊥⊥α) where Iγ ∈ M(Σ), and σ(ΣIγ ⊥⊥α) =
〈Tσ,Aσ〉. Thereafter, for every EαK K ∈ (ΣIγ ⊥⊥α) we
have two standpoints from Def. 6: a)TK ⊆ Tσ, and b) if
TK = ∅ and FK �= ∅ then FK ∩ Aσ �= ∅.

Since anti-shielding affects only assertional knowledge in
σ(ΣIγ ⊥⊥α), the former case is verified trivially. From case
b), we have Aσ ⊆ Σ and Aσ �⊆ Σ′. This means that Aσ is
satisfied by every model I ∈ M(Σ), but there are some I ′ ∈
M(Σ′) that do not satisfy it. Therefore, for each β ∈ Aσ

there is some I ′ satisfying ¬β. Moreover, there is at least
one model I ′ for each disagreement Âσ ∈ δ(Aσ). Finally,
each I ′ determines a KB extension Σ′

I′ that do not contain
any EαK for α. This means that Σ′

I′ �|= α and since Âσ ⊆
SI′ ⊆ Σ′

I′ , it is clear that there is no H ⊆ Σ′, i.e., H ⊆
Σ\σ(ΣIγ ⊥⊥α) such that H∪〈∅, Âσ〉 |= α, as stated by anti-
shielding. �

Theorem 1 (Anti-Shielding Model-Based Contraction)
An operator “�” is an anti-shielding model-based con-
traction operator iff it satisfies success, inclusion, core
retainment, and uniformity.

Proof: Construction-to-postulates: Let “�” be an anti-
shielding model-based contraction for Σ = 〈TΣ,AΣ〉. We
will show that it satisfies the four conditions of the theorem.

Success follows from the first part of Prop. 2, and inclu-
sion, trivially from Def. 7. For core-retainment, suppose that

β ∈ Σ and β �∈ Σ � α. Then it holds that β ∈ σ(ΣIγ ⊥⊥α),
given that Σ � α = Σ\σ(ΣIγ ⊥⊥α) by Def. 7. Therefore,
by Def. 6, σ(ΣIγ ⊥⊥α) ⊆ (

⋃
K∈(ΣIγ

⊥⊥α)K) ∩ Σ, where

σ(ΣIγ ⊥⊥α) = 〈Tσ,Aσ〉. Thus, there is some EαKK ⊆ ΣIγ

such that β ∈ K. It follows that β ∈ TΣ or β ∈ AΣ. For
the former, when β ∈ TΣ, we know β ∈ TK and following
condition (2a) in Def. 6, TK ⊆ Tσ holds for every K. For
the latter, when β ∈ AΣ, we know β ∈ FK and following
condition (2b) in Def. 6, we know that TK = ∅, FK �= ∅, and
β ∈ (FK ∩Aσ). Thus, in any case, it is proved the existence
of some EαK K ⊆ ΣIγ such that β ∈ K. Let now consider
H = K\{β}. It is clear that H ⊆ ΣIγ , then H �|= α but
H ∪ {β} |= α (from condition (3) in Def. 2) shows core-
retainment is satisfied.

For uniformity, suppose that it holds for all subsets
B ⊆ ΣIγ that B |= α if and only if B |= β. By
Prop. 3, ΣIγ ⊥⊥α=ΣIγ ⊥⊥β. It follows from this that
σ(ΣIγ ⊥⊥α) = σ(ΣIγ ⊥⊥β), and by the definition of “�” that
Σ � α = Σ � β, so that uniformity is satisfied.

Postulates-to-construction: Let “�” and Σ be such that the
four conditions of the theorem are satisfied. We are going to
show that “�” is an anti-shielding model-based contraction.
For that purpose, let σ be such that for all α:

σ(ΣIγ ⊥⊥α) = Σ\(Σ � α).

This follows from inclusion (Σ � α ⊆ Σ) and Σ � α =
Σ\σ(ΣIγ ⊥⊥α) as posed by Def. 7. Thereafter, we need to
verify that σ is an anti-shielding model incision function for
Σ. To be that, both “γ” and “σ” must be functions, and “σ”
also satisfy (1), and (2) from Def. 6, and anti-shielding.

Proof that “γ” and “σ” are functions: Let α and β be two
sentences such that ΣIγ ⊥⊥α = ΣIγ ⊥⊥β. We need to show
that γα = γβ = Iγ and σ(ΣIγ ⊥⊥α) = σ(ΣIγ ⊥⊥β). It
follows from ΣIγ ⊥⊥α = ΣIγ ⊥⊥β, by Prop. 3, that every
subset B ⊆ ΣIγ implies α if and only if it implies β. Thus,
by uniformity, Σ�α = Σ�β. Hence, from the definition of
“γ”, “σ”, and “�” it follows that σ(ΣIγ ⊥⊥α) = σ(ΣIγ ⊥⊥β).

Proof that (1) is satisfied: We will show that
σ(ΣIγ ⊥⊥α) ⊆ (

⋃
K∈(ΣIγ

⊥⊥α)K) ∩ Σ. Let β ∈ σ(ΣIγ ⊥⊥α),
it follows from core-retainment (given its preconditions β ∈
Σ and β �∈ Σ � α) that there is some H ⊆ ΣIγ such
that H �|= α but H ∪ {β} |= α. Hence, it follows that
there is some EαK K such that β ∈ K ∈ (ΣIγ ⊥⊥α).
Thus, β ∈

⋃
K∈(ΣIγ

⊥⊥α)K and since β ∈ Σ, we conclude

β ∈ ((
⋃

K∈(ΣIγ
⊥⊥α)K) ∩ Σ).

Proof that (2) is satisfied: Suppose that 〈∅, ∅〉 �= K ∈
ΣIγ ⊥⊥α. It follows from this that �|= α. By success, Σ�α �|=
α. Since σ(ΣIγ ⊥⊥α) ⊆ Σ (where σ(ΣIγ ⊥⊥α) = 〈Tσ,Aσ〉)
and K |= α we may conclude that (TK ∪ FK) �⊆ Σ � α,
i.e., that there is some β ∈ (TK ∪ FK) such that β �∈ Σ � α.
This leave us two options: β ∈ Tσ or β ∈ Aσ . Besides,
since (TK ∪ FK) ⊆ Σ it follows β ∈ (Σ\Σ � α), i.e., β ∈
σ(ΣIγ ⊥⊥α). Therefore, we have also that β ∈ TK or β ∈ FK.
Hence, if β ∈ TK, this is enough to prove a). To the contrary,
if β ∈ FK, we have that TK = ∅, FK �= ∅, and β ∈ (FK∩Aσ).
Finally (FK ∩ Aσ) �= ∅.



Proof that “σ” guaranties anti-shielding: Given success, it
follows directly from the second part of Prop. 2. �

The following equivalence is similar to that introduced in
(Hansson 1999). Its proof is absence due to space reasons.

Proposition 3 The following conditions are equivalent:

(1) ΣIγ ⊥⊥α=ΣIγ ⊥⊥β

(2) For all subsets H ⊆ ΣIγ : H |= α iff H |= β.

The following theorems are related to the principles pro-
posed in (Dalal 1988). Theorem 2 assures that any resultant
KB from a model-based contraction operation will conform
the DL used for the previous KB, whereas Theorem 3 ab-
stract away from the DL used, stating that any pair of logi-
cally equivalent knowledge will be equally treated.

Theorem 2 (Adequacy of Representation) Let L be an
AL[U ][E ][C] DL. For any KB Σ ⊆ LT × LA and any sen-
tence α ∈ L, it follows (Σ � α) ⊆ L× L.

Theorem 3 (Irrelevance of Syntax) Let L,L′ be two
AL[U ][E ][C] DLs, Σ ⊆ LT × LA and Σ′ ⊆ LT ′ × LA′,
two KBs, and α ∈ L and α′ ∈ L′, two such DL sentences.
If α ≈ α′ (where ≈ means logically equivalent to) and for
every β ∈ Σ and every β ′ ∈ Σ′, β ≈ β′, then for every
βR ∈ (Σ � α) and every β′

R ∈ (Σ′ � α′), βR ≈ β′
R.

Algorithm Specification
Since our theory relies on the proper selection of an α-
minimal model Iγ ∈ M(Σ), it is important to propose an
algorithm implementing the selection function. An interest-
ing approach would be to take advantage of the tableau algo-
rithm used by the DL’s subjacent inference engine, in such
a way that Iγ turns out being its outcome at the time the
satisfiability of α is being checked. This would provide an
important shortcut in favor of the computability, such that
finding the proper model I γ would be attached to the time
of computing the satisfiability checking of the sentence α.

Notice that the (canonical) model identified by a classical
tableau procedure has the form of a model I α, thus we will
trivially assume the devised model as the one selected by the
model selection function “γ”, such that Iα = Iγ . Hence, its
related α-minimal KB extension ΣIγ may be generated and
therefore it could be checked which of the EαKs obtained
by the tableau process is included in ΣIγ , thus generating
the set of EαKs ΣIγ ⊥⊥α. Hence, a model incision function
“σ” may be applied obtaining σ(ΣIγ ⊥⊥α) and finally the
contraction Σ � α is resolved.

A special mention should be done regarding the anti-
shielding property. As seen before, the anti-shielding val-
idation is directly related to the assertional knowledge the
incision function chooses to eliminate, and the sentence α to
be contracted . The main problem appears when the incised
assertions Aσ , and its disagreement sets Âσ, may conform
new models satisfying α. That is, if the sentence α to be con-
tracted considers a concept C and also some role R whose
range is in its complement ¬C (see Ex. 2), this may pro-
voke the disagreement sets to be part of the new α-minimal
extensions of the resultant KB.

To solve this situation, a simple heuristic may consider
to avoid any incision of a concept if its complement is also

considered in the satisfiability checking of the tableau ma-
chinery, disregarding both are relating different individual
names. This is specified below.

Anti-Shielding Rule
Condition: A contains A(x), and ∀R.¬A(y) or ∃R.¬A(y),

for any individual names x, y such that x �= y.
Action: A′ ← A\{A(x),¬A(y)}.

Notice that the anti-shielding rule will be used after ob-
taining a closed constraint system, and it will always leave a
non-empty ABoxA′ since such a rule could only be applied
in the presence of some role R(x, y). Therefore, the model
incision function would have at least R(x, y) to choose.

Algorithm 1 Calculate Σ′ = Σ � α.
Input: Σ, α.
Output: Σ′.−→

S ← tableauProc(Σ, α).
if
−→
S is closed then
Iα ← canonicalModel (Σ,

−→
S ).

σ(ΣIγ ⊥⊥α)← antiShIncision(Σ, Iα,
−→
S ).

Σ′ ← Σ\σ(ΣIγ ⊥⊥α).
else

Σ′ ← Σ.
end if

The antiShIncision procedure identifies each EαK from
the closed constraint system conforming the model I α and
the KB Σ. This is done by recognizing each EαK at a time,
in order to maintain the same space requirement of the re-
lated tableau procedure. After one EαK is identified, it is
viewed as an instantiation from the closed constraint system,
then the Anti-Shielding Rule above is applied to the EαK
restricting the domain of the incision wrt. assertions. Con-
sequently, the model incision is applied to the remainder of
the EαK at issue, in accordance to Def. 6. Afterwards, the
closed constraint system (which remains intact) will deter-
mine the next recognition of a new EαK.

Theorem 4 (Model-Based Contractions Complexity) Let
L be an ALC DL, Σ ⊆ L, a KB, α ∈ L, a sentence, and
“�”, an anti-shielding model-based contraction operator.
The complexity of Σ � α is PSPACE-complete.

Proof sketch: ALC DLs have been proved to be PSPACE-
complete for satisfiability of concepts descriptions, follow-
ing the related tableau algorithm. Thus, since Algorithm 1
calls once to the tableau procedure, we should analyze that
the rest of the algorithm could be computed in polynomial
space as being required by the procedure tableauProc.

The most problematic procedure in our algorithm may be
antiShIncision . Conforming the given canonical model and
the resultant constraint system, antiShIncision chooses the
related knowledge to each EαK by calculating, and consid-
ering them, each at a time (this is done with no need to calcu-
late the related KB extension). Afterwards, since each EαK
fits the space of the constraint system considered, it follows



that antiShIncision is executed in the polynomial space re-
quired before. Finally, Alg.1 for ALC DLs is proved to be
PSPACE-complete. �

Related Work
Ontology revision is currently an interesting topic in which
belief revision meets description logics. In the last few
years, several articles in this area has been published. For
instance, in (Flouris et al. 2006), incoherence and incon-
sistency of ontologies are formally presented. Based on the
distinction between coherent and consistent negation, a set
of postulates for revising DLs is proposed, although no op-
erator is specified. Recently in (Qi et al. 2008), a kernel
revision operator for terminologies was presented, there an
incision function is specified to delete axioms avoiding a ter-
minology to evolve incoherently. (Ribeiro & Wassermann
2007) presents a similar approach in which an incision is
performed over terminologies dealing with inconsistency.
Similarly, in (Haase et al. 2005), based on a selection func-
tion different sub-ontologies are identified to consistently in-
corporate a given new axiom.

In general, most of the ontology change operators pro-
posed so far are based on the notions of MIPS and MUPS.
Such constructions were originally presented in (Schlobach
& Cornet 2003) as a debug tool for pinpointing terminolog-
ical errors to correct inconsistencies. In contrast, in (Meyer,
Lee, & Booth 2005) the KB is weakened and inconsistencies
are also tolerated.

In our approach, we manage the evolution in ontologies
by considering not only axioms but also assertional knowl-
edge. Moreover, a model-based contraction addresses in ad-
vance inconsistencies and incoherencies, that is, statements
eliminated from the ontology avoid as much as possible in-
stance data loss (following minimal change). Afterwards,
the intention of the complete change operator is to accom-
modate the deleted axioms to avoid incoherency, and further
reincorporate them. This latter sub-task of the change oper-
ator is part of our ongoing work in the matter.

Similar to the construction of α-kernels, MUPS are de-
fined as minimal inconsistent sets for a given atomic con-
cept. This structure is constructed with the aim of restor-
ing satisfiability to an unsatisfiable concept definition. In
our approach, we anticipate the change and prepare the on-
tology to accept the new information consistently, leaving
the accommodation of outdated axioms to the completion
of the ontology change operation. This is the purpose of
model-based contractions, defined as a functional part of the
general change operation that makes effective an ontological
change.

As stated before, model-based contractions are motivated
by kernel contractions in their intuitions of breaking mini-
mal proofs for a given sentence, but despite both construc-
tions delete beliefs from minimal proofs, they are seman-
tically different. In kernel contractions, deletions break or
cut proofs. However, in model-based contractions deletions
imply a variation of the set of models and therefore the gen-
eration of new associated KB extensions, while the original
proofs remain.

In (Dalal 1988) a KB revision operation was semanti-
cally specified at the knowledge level by considering model-
theoretic semantics. Although, as stated by the author, no
consideration about differential treatment of certain atoms,
and even formulae, is taken into account, so that some be-
liefs could be more easily given up.

The six AGM basic postulates for contractions (Al-
chourrón, Gärdenfors, & Makinson 1985) were supposed to
capture the intuition behind any contraction operation on a
belief set (closed under logical consequence). But recently
in (Flouris February 2006), it was shown that some Tarskian
logics –non-AGM Compliant logics– do not admit a contrac-
tion operation satisfying the six AGM postulates. However,
they admit contractions without recovery.

Regarding DLs, we are particularly interested in very ex-
pressive logics like SHIF(D) andSHOIN (D), which are
shown to be equivalent to OWL-Lite and OWL-DL (Hor-
rocks & Patel-Schneider 2003), the two OWL sub-languages
for which complete reasoners are known. Such DLs are
known to be non-AGM Compliant (Flouris February 2006),
but since this requires to guarantee recovery, the alternative
to find some replacement postulate appears sensible.

In particular, recovery has been the most problematic pos-
tulate, standing unnaturally for the principle of minimal
change. For instance, in (Hansson 1999) regarding bases,
core-retainment have been proposed as a substitute for re-
covery, while uniformity stands for extensionality.

Discussion
In contrast to item 2a) in Def. 6, it seems enough for it to be
defined as: “If TK �= ∅ then TK ∩ Tσ �= ∅, and... ”.

Although that would (apparently) follow minimal change,
such decision would be a detriment to minimal change wrt.
the complete ontology change operator, as will be seen be-
low. In consequence, we decided to take complete termi-
nologies as stated by the following intuition: when an axiom
ends up being unsatisfiable, a contradiction appears while
checking its unfolded version. Since that terminology is part
of a minimal α-proof, each of the axioms considered –along
with the sentence to be incorporated– are interrelated, as in-
ferential steps to infer a minimal incoherence.

Axiom unfolding may provoke an explosion in the size
of the search space leading to a notable degradation in per-
formance. For that reason, a careful analysis is required to
provide an efficient methodology. In (Tsarkov, Horrocks, &
Patel-Schneider 2007), a complete overview of lazy unfold-
ing and other reasoning optimizations are described.

By analyzing a unique unfolded axiom it let us to iden-
tify the exact point in which the axiom turns to unsatisfia-
bility. That is, the terminology from each EαK along with
the sentence ϕ is a minimal incoherence preserving sub-
terminology (MIPS). After that, technics from ontology de-
bugging could be applied to restore coherence to the sub-
terminology. Finally, it is incorporated to the KB.

For instance, in Ex. 1, we have axiom D3 � C � ¬D2

in an EαK. Considering the sentence ϕ = C � D2, note
that {D3 � C � ¬D2, C � D2} is a MIPS. It is clear that
the unfolded axiom D3 � D2 � ¬D2 is unsatisfiable. Later



on, coherency may be restored by assuming the unfolded
axiom as D3 � D2, which means that the repaired sub-
terminology ends up being {D3 � C, C � D2}. Finally, the
repaired terminology may be reincorporated to the evolved
KB, which would end up consistent and coherent.

Note that, this (apparently) drawback on minimal change
wrt. the contraction does not contradict core-retainment.
The matter discussed above is part of the ongoing work, and
is proposed as future work for the completion of the ontol-
ogy change operation.

Conclusions and Future Work
In this paper we have proposed a new contraction operator
of model-theoretic semantics, dedicated to avoid the infer-
ence of a sentence α in a specific ontology, both expressed
in some description language as AL[U ][E ][C].

The process modeled by model-based contractions may
be summed up as follows: from an ontology O and some
finite model I, we extend the ontology to OI . In it, differ-
ent sub-ontologies, namely EαKs K1,K2, . . . are identified.
Analyzing the information in such sub-ontologies, an inci-
sion function “σ” determines a sub-ontologyOσ ⊆ O, such
that O |= α, but (O\Oσ) �|= α.

Our intention regarding the formal theory here provided,
is to apply it on other more expressive DLs like SHIF(D)
and SHOIN (D). This work is introductory in that sense.
As part of its preliminary results, an algorithm was pro-
vided as a possible option towards its further realization.
Such algorithm has been defined on top of the tableau proce-
dure used by the related DL reasoner to find the appropriate
model for the theory to be applied. Moreover, since the the-
ory mostly relies on such a selection, the complexity results
in terms of the space required to compute, depends on the
tableaux algorithm used to reason.

In this sense, the model selection (and its related prefer-
ence criterion “≺”) has been abstracted away from the al-
gorithm, and assumed to be the canonical model recognized
from the tableau procedure. For this matter, it becomes in-
teresting to investigate the model preference criterion “≺”
to be specified. By determining such a criterion, the tableau
procedure might be directed by specifying an order of the
transformation rules to apply, and different properties to de-
termine which constraint systems should be attended first.

Since ontologies are highly reusable distributed, genera-
tion of intermediate inconsistent states may be critical for
any change operation. This is a considerable advantage that
model-based contractions provide, since they “foretell” any
undesired effect from the change operation, repairing it in
advance. In this sense, adjustment of outdated axioms is
part of our future work in the field of ontology debugging.

This proposal would be incomplete, without considering
model-based contractions as a sub-operation of a broader
ontology change operator. Indeed, some assumptions made
relying on that consideration, are sensible only for that mat-
ter. Future work also involves the formalization of the ontol-
ogy change operation, along with a set of general principles
for the evolution, to state a set of postulates by which the
new change operator may be axiomatically characterized.
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