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Abstract

Defeasible Logic Programming (DeLP) is a suitable tool for knowledge representation
and reasoning. Its operational semantics is based on a dialectical analysis where arguments
for and against a literal interact in order to determine whether this literal is believed by
a reasoning agent. The semantics GS is a declarative trivalued game-based semantics for
DeLP that is sound and complete for DeLP operational semantics.

Complexity theory has become an important tool for comparing different formalism
and for helping to improve implementations whenever is possible. For these reasons, it is
important to investigate the computational complexity and expressive power of DeLP.

In this paper we present a complexity analysis of DeLP through game-semantics GS.
In particular, we have determined that computing rigorous consequences is P-complete
and that the decision problem “a set of defeasible rules is an argument for a literal under
a de.l.p.” is in P.



1 Introduction

Defeasible Logic Programming (DeLP) is a general argumentation based tool for knowledge
representation and reasoning [GS04]1. Its operational semantics is based on a dialectical analysis
where arguments for and against a literal interact in order to determine whether this literal
is believed by a reasoning agent. The semantics GS is a declarative trivalued game-based
semantics for DeLP that links game and model theories [CS04]. Soundness and completeness
of GS with respect to DeLP operational semantics have been proved.

Even thought complexity for nonmonotonic reasoning systems has been studied in depth for
several formalisms such us default logic, autoepistemic logic, circumscription, abduction and
logic programming [CS93, DEGV01] until now not many complexity results for argumentation
systems have been reported. This situation can partly be explained by the fact that, historically,
implementations of argumentation systems have been limited to the legal area and with no real
time response restriction (see [Pol95, Ver98]). However, in recent years, several applications
have been developed and implemented using argumentation systems related, for instance, with
multiagents systems and web search [ABCMB04, CM04, BAV04].

Complexity theory has become an important tool for comparing different formalism and for
helping to improve implementations whenever is possible. For this reason, it is important to
analyze computational complexity and expressive power of DeLP, since the former tells us how
difficult it is to answer a query, while the latter gives precise characterization of the concepts
that it is possible to define as queries.

Even though Dimopoulus et al. [DNT02] presents computational complexity of the argu-
mentation based abstract framework for default reasoning [BDKT97], DeLP does not fit in
this framework. Another notable study of computational complexity of defeasible systems has
been done in [Mah01]. However, the defeasible theory analyzed differs from DeLP in several
points, such as the kind of knowledge: facts and strict, defeasible and defeaters rules and its
operational semantics.

In this paper we present a complexity analysis of DeLP through game-semantics GS. In
particular, we have determined that computing rigorous consequences is P-complete and that
the decision problem of whether “a set of defeasible rules is an argument for a literal under a
defeasible logic program” is in P.

The rest of the paper is structured as follows. In section 2, we briefly present basic concepts
of DeLP. Section 3, describe the declarative semantics game-based GS. Next we analyze DeLP
through GS semantics pointing out which decision problems must been studied. In section 5,
we present the main results of this paper: the complexity analysis of some problems in DeLP.
Finally, we present our conclusions and future research lines.

2 DeLP and Operational Semantics Intuitions

We will start by introducing some of the basic concepts in DeLP. In the language of DeLP a
literal L is a atom A or a negated atom ∼A, where ∼ represents the strong negation in the
logic programming sense. The complement of a literal L, denoted as L, is defined as follows:
L =∼A, if L is an atom, otherwise if L is a negated atom, L = A.

Definition 1 A strict rule is an ordered pair, denoted “Head ← Body”, whose first member
“Head” is a ground literal, and whose second member “Body” is a finite set of ground literals.

1An on-line interpreter of DeLP can be found in http://lidia.cs.uns.edu.ar/DeLP



A strict rule with head L0 and body {L1, . . . Ln, n > 0} can also be written as L0 ← L1, . . . Ln.
If body is the empty set, then we can write L0. and it is call a Fact. A defeasible rule is an
ordered pair, denoted “Head —< Body”, whose first member “Head” is a ground literal, and
whose second member “Body” is a finite, non-empty set of ground literals. A defeasible rule
with head L0 and body {L1, . . . Ln, n > 0} can also be written as L0

—< L1, . . . Ln.
A defeasible logic program P, abbreviated de.l.p., is a set of strict rules and defeasible rules.
We will distinguish the subset Π of strict rules and the subset ∆ of defeasible rules, and we will
denote P = 〈Π, ∆〉, when required.

Intuitively, whereas Π is a set of certain and exception-free knowledge, ∆ is a set of defeasible
knowledge, i.e., tentative information that could be used, whenever nothing is posed against it.
Even though a de.l.p. may be an infinite set of strict and defeasible rules, complexity analysis
has been limited to finite de.l.p..

DeLP operational semantics is based on developments in non monotonic argumentation
systems [Pol87, SL92]. An argument for a literal L is a minimal subset of ∆ that together
with Π consistently entails L [GS04]. Thus, an agent can explain a literal L, throughout this
argument.

However, in order to determine whether a literal L is supported from a de.l.p. a dialectical
tree for L is built. An argument for L represents the root of the dialectical tree, and every other
node in the tree is a defeater argument against its parent. At each level, for a given a node
we must consider all the arguments against that node. Thus every node has a descendant for
every defeater. A comparison criteria is needed for determining whether an argument defeats
another one. Even though there exists several preference relations considered in the literature,
in this first approach we will abstract away from that issue.

We will say that a literal L is warranted if there is an argument for L, and in the dialectical
tree each defeater of the root is itself defeated. Recursively, this leads to a marking procedure of
the tree that begins by considering that leaves in the dialectical tree are undefeated arguments
as a consequence of having no defeaters to consider. Finally, an agent will believe in a literal
L, if L is a warranted literal.

There exist four possible answers for a query L: yes if L is warranted, no if L is warranted
(i.e., the complement of L is warranted), undecided if neither L nor L are warranted, and
unknown if L is not in the underlying signature of the program.

We have briefly given an intuitive introduction to the DeLP language and the dialectical
procedure for obtaining a warranted conclusion. For complete details on DeLP see [GS04]. Now
we will continue with the analysis of the declarative semantics GS for DeLP.

3 Basic Concepts on Game Semantics

Games have an analogy with a dispute and, therefore, that analogy extends to argument-based
reasoning. A dispute can be seen as a game where in an alternating manner, the player P,
the proponent, starts with an argument for a literal. The player O, the opponent, attacks
the previous argument with a counterargument strong enough to defeat it. The dispute could
continue with a counterargument of the proponent, and so on. When a player runs out of
moves, i.e., that player can not find a counterargument for any of his adversary’s arguments,
the game is over. If the proponent’s argument has not been defeated then she has won the
game.



The semantics GS is a declarative trivalued game-based semantics for DeLP that links game
and model theories. Soundness and completeness of GS with respect to DeLP operational
semantics have been proved [CS04]. In the following we present some notions of GS, for more
details see [CS00, CS04].

Definition 2 Let P be a de.l.p.. A game-based interpretation for P, or G-Interpretation for P
for short, is a tuple 〈T, F 〉, such that T and F are subsets of atoms of the underlying signature
of P and T ∩ F = ∅.

Let Lit be the set of all the ground literals that can generated considering the underlying
signature of a de.l.p.. The set of atoms undecided is defined as the set U = Lit+ − {T ∪ F},
being Lit+ the set of all the atoms in Lit.

Movements in a game are arguments. For every argument A for a literal L we can built
a game whose first move is A. Thus, a family of games will be obtained considering all the
arguments for L. Each game can finish in two possible ways: won by the P or won by the O.
There is no place for a draw. As the first move is made by the P, we are interested in those
games won by this player.

Definition 3 Let P be a plr, L an atom of the underlying signature of P, F(L,P) the game
family for the literal L and F(L,P) the game family for the literal L for the plr P. A game-
based model for P, that we name G-Model of P, is a G-interpretation 〈T, F 〉 such that:

• If there exists a game G(〈A, L〉,P) in the family F(L,P) won by P, then L belongs to T .

• If there exists a game G(〈A, L〉,P) in the family F(L,P) won by P, then L belongs to F .

Since we only consider literals under the signature of de.l.p., the G-model definition does
not contemplate the answer unknown. The minimal G-model defines a sound and complete
semantics GS for DeLP [CS04].

In order to capture through a game the dialectical procedure, we need to define in a declar-
ative way the movements of such game: the argument. The followings definitions are based on
the notation introduced in [Lif96].

Definition 4 [CS00] Let X be a set of ground literals. The set X is rigorously closed under
a de.l.p. P, if for every strict rule Head ← Body of P, Head ∈ X whenever Body ⊆ X and
for every defeasible rule Head′

—< Body′ of P, Head′ ∈ X whenever Body′ ⊆ X.
The set X is consistent if there is no literal L such that {L,L} ⊆ X. Otherwise, we will say
that X is inconsistent.
We say that X is logically closed if it is consistent or it is equal to Lit.

Intuitively, if the set of knowledge of an agent is rigorously closed under a de.l.p., the agent
will not believe in a literal that she cannot explain.

Definition 5 [CS00] Let Ψ a set of strict and defeasible rules. The set of rigorous consequences
under the rules Ψ, that we will denoted CnR(Ψ), is the least set of literals w.r.t. the inclusion,
such that it is logically closed and rigorously closed under Ψ.
Let P be a de.l.p., the set of rigorous consequences of P is defined as CnR(P).

Even though rigorous consequences do not reflect the underlying ideas of strict and defeasible
rules, it is very useful for introducing a new definition of argument.



Definition 6 [CS00] Let P = 〈Π, ∆〉 a de.l.p.. We say that 〈A, L〉 is an argument structure
for a ground literal L, if A is a set of defeasible rules of ∆, such that:

1. L ∈ CnR(Π ∪ A)

2. CnR(Π ∪ A) 6= Lit

3. A is w.r.t. inclusion, i.e., there is no A′ ⊆ A such that satisfies (1) and (2).

We have briefly presented the DeLP language and its operational and declarative game-
based semantics. Now, we will be able of analyzing the system and studying its complexity.

4 Discussion on GS Complexity

There are four ways to measure the complexity of evaluating queries in a specific language [Var82,
PY97, DEGV01]:

• Data complexity: a specific query in the language is fixed and we study the complexity
of applying this query to arbitrary databases. The complexity is then given as a function
of the size of the databases.

• Program complexity or expression complexity: a specific database is fixed and
we study the complexity of applying queries represented by arbitrary expressions in the
language. The complexity is given as a function of the length of the expression.

• Combined complexity: considers both query and database instance as input variables.
Combined complexity is rarely differentiated from expression complexity.

• Parametric complexity: complexity is expressed as function of some reasonable para-
meters. For instance, the number of variables appearing in the query [PY97].

The main complexity measure for logic programming is combined complexity. Hereafter, when
we refer to the complexity of a fragment of logic programming, we mean the following type of
complexity [DEGV01]:

Complexity of (some fragment of) logic programming: is the complexity of checking if
for variable programs P and variable ground atoms A, P |= A.

Consequently, as we are interested in computing the complexity of defeasible logic programming,
and following the above principle, we will investigate if a query A is warranted by a de.l.p.
P = (Π, ∆), denoted Π |=∆ A, adapting [Cap03] notation.

DeLP is an skeptical reasoning system since every consequence of a defeasible logical pro-
gram is analyzed considering all the arguments for and against it. The semantics GS, a trivalued
game semantics, characterizes such skeptical reasoning by the set T and F , since T ∪ F is the
set of all warranted literals, where F is the set of the complements of every member of F .
Undecided literals are those literals L for which there is no warrant for L or for the complement
of L. In this case we must contemplate two possibilities:

• The literal has no argument neither for nor against it, i.e., the agent has no information
about the query.



• The literal has an argument for or against it, but it is defeated.

Thus when considering DeLP in relation to game semantics, there are two relevant compu-
tational problems to analyze:

• Deciding whether a formula α belongs to the set T or to the set F of a game G(〈A, L〉,P)
won by the proponent P.

• Deciding a formula α belongs to the set U = Lit+ − {T ∪ F} of undecided atoms in the
G-model.

The former problem, hereafter called gamesat, involves finding just a game won by the pro-
ponent, but in order to capture the latter it is necessary to find all the games for the literal and
for the complement of this literal and to prove that none of them is won by the proponent.

Arguments and counterarguments are the movements in the game. Thus, for analyzing the
complexity we study the following decision problem: is a given subset A of ∆ an argument
for a literal L? Accordingly with the definition of argument this problem has three parts: is
L a consequence of Π ∪ A?, is Π ∪ A consistent?, and is there a subset A′ of A such that it
is consistent with Π and that together with Π derives L? In the next sections we present the
main results of this work: this problem is in P; furthermore, deciding whether a literal is a
consequence of a set of defeasible rules union Π is P-complete.

5 The Complexity of Computing an Argument

Building arguments is the computational core of DeLP, for this reason this work analyzes the
complexity of the following decision problem: whether a given subset of defeasible rules is an
argument for a literal under a de.l.p.. As mentioned above, this problem can be divided in
three parts according to argument definition.

Let P = 〈Π, ∆〉 be a de.l.p., L be a literal and A ⊆ ∆. First condition of definition
6, that involves rigorous consequences concept is h ∈ CnR(Π ∪ A). In [CS00], we have de-
fined a transformation Φ from a de.l.p. into a definite logic program, i.e., a logic program
with just horn clauses. Briefly, Φ transforms negated atoms in new atoms without negation,
Φ(H —< B) = Φ(H) ← Φ(B) and all other rules or atoms remain the same. We will use this
transformation and the following lemma in order to reduce the rigorous consequences of a de.l.p.
into consequences of a propositional definite logic programming.

Lemma 1 Let DP be definite logic program and M be the minimal model of DP , then M =
CnR(DP ).

We are interested in computing the time complexity of verifying whether L ∈ CnR(Π∪A).
We shall construct a logic program with just Horn clauses, denoted HP(Π,A, L) such that
h ∈ CnR(Π ∪ A) if and only if HP(Π,A, L) |= yes .

Suppose that L1, . . . , Ln are all the literals in Π ∪ A. We define HP(Π,A, L) as follows:

HP(Π,A, L) = Φ(Π) ∪ Φ(A) ∪ {yes ← Φ(L)} ∪ {yes ← Φ(Li), Φ(Li) : 1 ≤ i ≤ n}

Even though sat decision problems, i.e., if there is a truth assignment that satisfies a
collection of clauses, is NP-complete [GJ79], both checking whether a definite propositional



logic program DP satisfies a ground atom A, i.e., DP |= A, and hornsat, i.e., the decision
problem of whether or not there is a truth assignment that satisfies a collection of horn clauses,
are P-complete [DEGV01, PY97].

Lemma 2 HP(Π,A, L) is a reduction from L ∈ CnR(Π∪A) into propositional logic program-
ming.

Proof: In order to prove our claim, we have to establish that:

1. L ∈ CnR(Π ∪ A) if and only if HP(Π,A, L) |= yes.

We will consider two cases:

• Π ∪ A is consistent.
L ∈ CnR(Π ∪ A) if and only if Φ(L) ∈ Φ(CnR(Π ∪ A)) if and only if Φ(L) ∈
CnR(Φ(Π ∪ A))(see [CS00]) if and only if, by theorem 1, Φ(L) is in the minimal
model of Φ(Π ∪ A) if and only if HP(Π,A, L) |= yes by the definition of minimal
model, the monotonicity property and the use of the rule yes ← Φ(L).

• Π ∪ A is inconsistent.
L ∈ CnR(Π ∪ A) = Lit if and only if there exists i, 1 ≤ i ≤ n, such that Φ(Li) and
Φ(Li) are in Φ(CnR(Π∪A)) if and only if Φ(Li) and Φ(Li) are in the minimal model
of HP(Π,A, L) if and only if HP(Π,A, L) |= yes by definition of minimal models,
monotonicity property and the use of the rule yes ← Φ(Li), Φ(Li).

2. HP is computed in logarithmic space: the transformation is quite simple and is feasible in
logarithmic space, since rules can be generated independently of each other except those
of the form yes ← Φ(Li), Φ(Li) which depends on the literal in the input.

Therefore HP(Π,A, L) is a reduction from L ∈ CnR(Π ∪A) into propositional logic program-
ming. ¥

Theorem 1 Let P = (Π, ∆) a de.l.p., A ⊆ ∆ and L a literal. Determining whether L ∈
CnR(Π ∪ A) is P-complete.

Proof:

• Membership: The least fixpoint T∞
P

of the operator TP , given a definite logic program P

can be computed in polynomial time [Pap94, PMG98, DEGV01]: the number of iterations
is bounded by the number of rules plus one. Each iteration step is feasible in polynomial
time. Thus finding the minimal model of a logic program with just Horn clauses is in
P [DEGV01].

By lemma 2, L ∈ CnR(Π ∪ A) has been reduced to propositional logic programming.
Therefore, L ∈ CnR(Π ∪ A) is in P.

• Hardness: Horn rules are strict rules in a de.l.p., and the minimal model of a definite
logic program P is equal to CnR(P). Therefore, by applying reduction by generalization,
we have reduced P |= L to L ∈ CnR(Π ∪ A). Propositional logic programming is P-
complete [DEGV01]. Therefore, to find if L ∈ CnR(Π ∪ A) is P-complete.



Algorithm: Minimal
Input: A an argument for a literal L, and Π a set of strict rules.
Output: true if A is a minimal argument for L, false otherwise

minimal=true
Aux= A
While minimal and not Aux = ∅ do

select H —< B ∈Aux
A′ = A− {H —< B}
if h ∈ CnR(Π ∪ A′) then minimal=false

else Aux= Aux - {H —< B}

Figure 1: Algorithm for verifying if a set of defeasible rules is minimal with respect to set
inclusion for deriving a literal L.

¥

Until now we have proved that first condition of argumentation definition is P-complete.
In the rest of this section we will analyze complexity results over a de.l.p. P = (Π, ∆), with m

atoms, n strict rules and k defeasible rules.
In Figure 1, we present an algorithm for verifying whether a set of defeasible rules is minimal

with respect to set inclusion for entail a literal L. Worst case of the minimality condition is
consider assuming that the argument has at most k defeasible rules, i.e., ∆ is an argument.
Computing minimality condition involves k loops verifying that L ∈ CnR(Π ∪ A′), which is in
P. Thus, this problem is solvable in polynomial time and therefore, it is in P.

Finally, to check if the set of defeasible rules is consistent under a de.l.p., we verify that
there is no atom such the atom and its complement are members of CnR(Π∪A). In the worst
case, when CnR(Π ∪ A) is consistent, this algorithm must control every atom in the signature
of the de.l.p.. Thus, to check if it is consistent is proportional to the number of atoms and
therefore is in P.

Both cases can be reduced to propositional logic programming. Because of lack of space we
will not present in detail this development but we will explain it briefly. We first transform a
de.l.p. into a set of horn clauses. Strict rules Head ← L1, L2, . . . , Ln have been transformed
into

sr(Head, (L1, L2, . . . , Ln))

and defeasible rules Head —< L1, L2, . . . , Ln have been transformed into

dr(Head, (L1, L2, . . . , Ln))

where Head is a literal. Every atom negated is transformed into a new arbitrary atom in the
program. Horn clauses to manage consistency and minimality are joined in order to find a model
that satisfies its heads. We list such an schema of those clauses in the appendix. Minimality
is reduced to checking if minimal(A,L,A) is a consequence of the definite logic program, i.e.,
if A is a minimal set given a potential argument A and a literal L. Consistency is reduced to
check if consistent(A) is a consequence of the definite logic program. It can be shown that
the ground definite logic program defined from such schema is sound and complete.



Theorem 2 The decision problem “is a given subset of defeasible rules an argument for a
literal under a de.l.p.?” is in P.

As a consequence of theorem 2, computing every movement in a game is tractable. However,
gamesat requires to build every argument that is a response against each argument introduced
as a defeater of a previous move. Furthermore, we must also take into account the preference
criterion between arguments. Unlike the defeasible system analyzed in [Mah01] in which the
preference relation is static, DeLP′s comparison criterion is modular. Therefore, depending on
what criterion is chosen, computation could become intractable. One of the criterion used as
an example is generalized specificity [SGCnS02], and even though its complexity has not been
analyzed, we conjecture that is not tractable.

6 Conclusion and Future Work

We have analyzed DeLP through the GS semantics, pointing out which decision problems must
been studied. We have proved that computing rigorous consequences is P-complete and we have
proved that the decision problem “whether a given subset of defeasible rules is an argument
for a literal under a de.l.p.” is in P and therefore, it is tractable. However we will be required
to compute all the arguments for and against a literal for playing games. Considering the
nonmonotonic formalisms complexity results [CS93] we believe that this problem is beyond the
tractable class.

As future work, we will analyze the complexity of gamesat and the decision problem that
deals with undecided literals and we will study the data complexity in order to compare the
expressive power of DeLP and of other non monotonic formalisms.
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Appendix: Horn clauses to manage minimality and consistency

Reduction of minimality problem into propositional logic programming

% cons(L,A): is true whenever a literal L is consequences of the argument A

% and the strict rules.

cons(L,A):-sr(L,B),consBody(B,A).

cons(L,A):-member(dr(L,B),A),consBody(B,A).

% consBody(B,A): is true if the body B of a rule is consequence of A

% and the strict rules.

consBody(true,_).

consBody((A,B),RR)<-- cons(A,RR),consBody(B,RR).

consBody(A,RR)<-- A\=(_B,_C),cons(A,RR).

%nocons(L,A) is true if L is not a consequence of an argument A.

nocons(L,A):-nomember(dr(L,B),A),pi(Pi),nomember(sr(L,B),Pi).

nocons(L,A):-member(dr(L,B),A),noconsBody(B,A).

nocons(L,A):-sr(L,B),B\=true,noconsBody(B,A).

% noconsBody(B,A): is true if he body B is not consequence of an argument A

% and the strict rules.

noconsBody((A,_B),RR)<-- nocons(A,RR).

noconsBody((A,B),RR)<-- cons(A,RR),noconsBody(B,RR).

noconsBody(A,RR)<-- A\=(_B,_C),nocons(A,RR).

% del_rule(AP,AP,L,A): is true if argument A, included in AP, has no

% superfluous rule.

del_rule([],_,_,[]).

del_rule(R,[],_,R).

del_rule([R|RR],RC,L,A)<-- cons(L,RR),delete(R,RC,RD),del_rule(RR,RD,L,A).

del_rule([R|RR],RC,L,A)<-- nocons(L,RR),append(RR,[R],RI),delete(R,RC,RD),

del_rule(RI,RD,L,A).

% minimal(AP,L,A): is true if the argument A, included in AP, is a minimal set



% such that the literal L is a consequence.

minimal(AP,L,A):-del_rule(AP,AP,L,A).

Reduction of consistent problem into propositional logic programming

% Complement of a literal with respect to strong negation.

complement(no(L), L).

complement(L, no(L)).

% Consistency: consistent(A) is true if A is consistent

consistent([]).

consistent(Arg)<-- atomCab(Atomos), consArg(Arg,Atomos,Cons),

revCons(Cons,Cons).

% revcons(A,B) is true if for every element E in A, E and its complement

% are member of B.

revCons([],_Cons).

revCons([C|RC],Cons)<-- member(C,Cons),complement(C,NC),

nomember(NC,Cons),revCons(RC,Cons).

% consArgAux(Arg,Atomos,AtomsCons)is true if AtomsCons contains every atom

% in Atoms such that it is consequence of Arg union strict rules set.

consArgAux(_Arg,[],[]).

consArgAux(Arg,[no(A)|RA],[no(A)|RC])<-- cons(no(A),Arg), consArgAux(Arg,RA,RC).

consArgAux(Arg,[no(A)|RA],RC)<-- nocons(no(A),Arg),consArgAux(Arg,RA,RC).

consArgAux(Arg,[A|RA],[A|RC])<-- cons(A,Arg), consArgAux(Arg,[no(A)|RA],RC).

consArgAux(Arg,[A|RA],RC)<-- nocons(A,Arg),consArgAux(Arg,[no(A)|RA],RC).

% consArgAux(Arg,Atomos,AtomosConsecuencia) is true if AtomsCons contains every

% atom in Atoms, without repeated elements such that it is consequence of Arg

% union strict rules set.

consArg(Arg,Atomos,Cons)<-- consArgAux(Arg,Atomos,ConsArg),

delete_repeated(ConsArg,Cons).

% atomCab(Atomos) is true if Atomos contais every atom in the head of a rule.

atomCab(Atomos)<-- litCab([],L),achieve_atoms(L,Atomos).

% litCab(LA,LN) is true if LN contains all literals in the head of

% defeasible and strict rules.

litCab(LA,LN)<-- dr(C,_B),nomember(C,LA),litCab([C|LA],LN).

litCab(LA,LN)<-- sr(C,_B),nomember(C,LA),litCab([C|LA],LN).

litCab(L,L).

% achieve_atoms(Lit,Atoms) is true if Atoms contains all the atoms

achieve_atoms([],[]).

achieve_atoms([no(A)|R],[A|RA])<-- achieve_atoms(R,RA).

achieve_atoms([A|R],[A|RA])<-- achieve_atoms(R,RA).


