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Abstract

Defeasible Logic Programming (DeLP) is a general argumen-
tation based system for knowledge representation and reason-
ing. Its proof theory is based on a dialectical analysis where
arguments for and against a literal interact in order to deter-
mine whether this literal is believed by a reasoning agent. The
semanticg/S is a declarative trivalued game-based semantics
for DeLP that is sound and complete for DeLP proof theory.
Complexity theory is an important tool for comparing differ-
ent formalism and for helping to improve implementations
whenever it is possible. In this work we address the prob-
lem of studying the complexity of some important decision
problems in DeLP. Thus, we characterize the relevant deci-
sion problems in the context of DeLP agd, and we define
data and combined complexity for DeLP. Since DeLP com-
putes every argument from a set of defeasible rules, it is of
central importance to analyze the complexity of two decision
problems. The first one can be defined as “Is a set of defea-
sible rules an argument for a literal under a defeasible logic
program?”. We prove that this problemRscomplete. The
second decision problem is “Does there exist an argument for
a literal under a defeasible logic program?”. We prove that
this problem is inNP. Furthermore, we study data complex-
ity of query answering in the context of DeLP. As far as we
know, data complexity has not been introduced in the context
of argumentation systems.

KEYWORDS Argumentation Systems, Defeasible Rea-
soning, Logic Programming, Game-based Semantics,
Complexity

Introduction

Defeasible Logic Programming (DeLP) is a general argu-
mentation based tool for knowledge representation and rea-
soning (Garta & Simari 2004). Its proof theory is based

*This research was partially supported by Secrat@eneral
de Ciencia y Tecnoldg of the Universidad Nacional del Sur, by
the Universidad Nacional del Comahue (Proyecto de Investigaci
04/E062), by Agencia Nacional de PromaciCientfica y Tec-
nologica (PICT 2002 No. 13096, PICT 2003 15043, PAV 076) and
by the National Research Council (CONICET)RBENTINA.

The interested reader can find an on-line interpreter for DeLP
inhttp://1idia.cs.uns.edu. ar/DeLP

Pablo R. Fillottrani

and Guillermo R. Simatri
Depto. de Cs. e Ing. de la Comp.
Universidad Nacional del Sur
Av. Alem 1253
(8000) Balta Blanca - ARGENTINA
{prf,grs}@cs.uns.edu.ar

on a dialectical analysis where arguments for and against
a literal interact in order to determine whether this litera
is believed by a reasoning agent. The semardiSsis a
declarative trivalued game-based semantics for DelLP that
links game-semantics (Abramsky & McCusker 1997) and
model-theory. Soundness and completeneggSivith re-
spect to DeLP proof theory have been proved (Cecchi &
Simari 2004).

Complexity theory is an important tool for comparing dif-
ferent formalism, and for helping to improve implementa-
tions whenever it is possible. For this reason, it is impurta
to analyze the computational complexity and the expressive
power of DeLP. The former tells us how difficult it is to an-
swer a query, while the latter gives a precise charactéizat
of the concepts that are definable as queries.

Even thought complexity for nonmonotonic reasoning
systems has been studied in depth for several formalisms
such us default logic, autoepistemic logic, circumsooipti
abduction and logic programming (Cadoli & Schaerf 1993;
Dantsinet al. 2001) until recently not many complexity re-
sults for argumentation systems have been reported.

This situation can be explained in part by the fact that,
historically, implementations of argumentation systeimnsgeh
been limited to areas with no real time response restriction
(see (Verheij 1998; Gordon & Karacapilidis 1997)). Re-
cently, however, several applications have been devejoped
and implemented using argumentation systems related, for
instance, with multiagent systems and web search (Atkin-
son, Bench-Capon, & Mc Burney 2004; Chesar & Ma-
guitman 2004a; 2004b; Bassiliades, Antoniou, & Vlahavas
2004). Scalability and robustness of such approaches heav-
ily depend on the computational properties of the underly-
ing algorithms. It is hence crucial to study these propsrtie
in order to expand the application fields of argumentation
systems.

Different computational complexity results (Dimopoulos,
Nebel, & Toni 2002; Bench-Capon 2003; Amgoud & Cayrol
2002; Dunne & Bench-Capon 2002) have been presented on
argumentation abstract framework (Bondareekal. 1997;
Dung 1995), based on admissibility and preferability seman
tics. However, those results do not apply directly to DelLP,
because its semantics are quite different. Another notable
study of the computational complexity of defeasible system



has been done in (Maher 2001). But, defeasible theory an-
alyzed in this work greatly differs from DeLP in several

denoted ad,, is defined as follows:L =~ A, if L is an
atom, otherwise ifl. is a negated atom, = A. Let X be

points, such as knowledge representation (facts and strict a set of literals, X is the set of the complement of every

rule, defeasible and defeaters rules) and their proof heor

When measuring the complexity of evaluating queries in
a specific language, we distinguish between several kinds
of complexity according to (Vardi 1982; Papadimitriou &
Yannakakis 1997; Dantsiat al. 2001). Data complexity
is the complexity of evaluating a specific query in the lan-
guage, when the query is fixed, and we study the complexity
of applying this query to arbitrary databases; the complex-
ity is thus given as a function of the size of the database.
Program or Expression complexigppears when a specific
database is fixed, and we study the complexity of applying
gueries represented by arbitrary expressions in the layggua
the complexity is given as a function of the length of the ex-
pression. Combined complexitgonsiders both query and
database instance as input variables.

In this work we are concerned with the study of complex-
ity of some important decision problems of DeLP. The sys-
tem and its asociated game semandiSsare analyzed intro-
ducing relevant decision problems in relation to the pdesib
query answers.

Since DeLP builds the arguments from a defeasible logic
program results of central importance to consider and eval-

member inX.

Definition 1 A strict rule is an ordered pair, denoted
“Head «+— Body”, where “Head” is a ground literal, and
“Body” is a finite set of ground literals. A strict rule
with headL, and body{L,,...L,,n > 0} is written as
Ly« Ly,...L,. If body is the empty set, then we write
L., and the rule is called Ract A defeasible rulds an
ordered pair, denotedH ead— Body”, where “Head” is

a ground literal, and Body” is a finite, non-empty set of
ground literals. A defeasible rule with hedg and body
{Li,...L,,n > 0}iswrittenasLo— Lq,...L,.

A defeasible logic prograr®, abbreviatedie.l.p, is a set
of strict rules and defeasible rules. We will distinguisk th
subsetdIr of facts,IIg of strict rules,II = I1r U Ilg and
the subsei\ of defeasible rules.

Intuitively, whereadl is a set of certain and exception-free
knowledgeA is a set of defeasible knowledge, i.e., tentative
information that could be used, whenever nothing is posed
against it.

By definition ade.l.p.may be an infinite set of strict and

uate two questions: “is a set of defeasible rules an argument defeasible rules but for complexity analysis we restriat ou

for a literal under a defeasible logic program?” which has
been proved to bE-complete, and does there exit an argu-
ment for a literal under a defeasible logic program? which
has been proved to be MP.

We define data, expression and combined complexity in
the context of DeLP, in order to evaluate the efficiency of
DeLP implementations. In particular, we study data com-
plexity of query answering to assess DeLP applications over
database technologies. As far as we know data complexity
has not been introduced in the context of argumentation sys-
tems.

The paper is structured as follows. In the following sec-
tion we briefly outline the fundamentals of DelLP, and de-
scribe the declarative game-based semaugties Then, we
discuss DeLP throug@S semantics pointing out the deci-
sion problems that are of central importance, and we define
data, expression and combined complexity in the context of
DelLP. Afterwards, we give complexity results on the exis-
tence of an argument for a literAlunder a defeasible logic
programP, and on the decision problem of whether a sub-
set of defeasible rules is an argument for a litdralinder
P. Next, we analyze data complexity for DeLP, and we
present complexity results for two decision problems on en-
tailment. In the last section, we summarize the main con-
tributions of this work, and we present our conclusions and
future research lines.

DeLP and Game Semantic§/S

We will start by introducing some of the basic concepts in
DelLP (see (Gaiia & Simari 2004) for complete details). In
the language of DeLP a literdl is a atomA or a negated
atom ~ A, where~ represents the strong negation in the
logic programming sense. The complement of a litdral

selves to finite defeasible logic programs.

We denote byLit the set of all the ground literals that
can be generated considering the underlying signature of a
de.l.p.an we denote by.it™ the set of all the atoms ihit.

DelLP proof theory is based on developments in non
monotonic argumentation systems (Pollock 1987; Simari &
Loui 1992). Anargument for a literalL is a minimal subset
of A that together witHI consistently entaild.. The no-
tion of entailment corresponds to the usual SLD derivation
used in logic programming, performed by backward chain-
ing on both strict and defeasible rules, where negated atoms
are treated as a new atom in the underlying signature. Thus,
an agent can explain a literal throughout this argument.

In order to determine whether a literials supported from
ade.l.p.a dialectical tree fol is built. An argument for
represents the root of the dialectical tree, and every other
node in the tree is a defeater argument against its parent. At
each level, for a given a node we must consider all the argu-
ments against that node. Thus every node has a descendant
for every defeater. A comparison criteria is needed forrdete
mining whether an argument defeats another. Even though
there exist several preference relations considered ititthe
erature, in this first approach we will abstract away front tha
issue.

We will say that a literall is warranted if there is an ar-
gument forL, and in the dialectical tree each defeater of the
root is itself defeated. Recursively, this leads to a maykin
procedure of the tree that begins by considering the fatt tha
leaves of the dialectical tree are undefeated arguments as a
consequence of having no defeaters. Finally, an agent will
believe in a literall, if L is a warranted literal.

There exist four possible answers for a queryves if L
is warrantedyo if L is warranted (i.e., the complementbf



is warranted)pnpecipep if neither L nor L are warranted,
andunkNownN if L is not in the underlying signature of the
program.

We have briefly given an intuitive introduction to the
DelLP language and the dialectical procedure for obtain-
ing a warranted conclusion. For complete details on DeLP
see (Gara & Simari 2004).

Games have an analogy with a dispute and, therefore, that

analogy extends to argument-based reasoning. A dispute cal

be seen as a game where in an alternating manner, the playe

Even though rigorous consequences do not reflect the un-
derlying ideas of strict and defeasible rules, they are very
useful for introducing a declarative definition of argument
Definition 4 Let P = (II,A) be ade.l.p. We say that
(A, L) is an argument structure for a ground litefalif A
is a set of defeasible rules &, such that:

1. Le C’nR(H U .A)

. Cnp(lTUA) # Lit

P, the proponent, starts with an argument for a literal. The 3. A is minimal w.r.t. inclusion, i.e., there is nd’ C A

playerO, the opponent, attacks the previous argument with

a counterargument strong enough to defeat it. The dispute

could continue with a counterargument of the proponent,
and so on. When a player runs out of moves, i.e., that player
can not find a counterargument for any of his adversary’s ar-

guments, the game is over. If the proponent’s argument has

not been defeated then she has won the game.

The semanticg/S is a declarative trivalued game-based
semantics for DeLP that links game-semantics (Abramsky
& McCusker 1997) and model theory. Soundness and com-
pleteness of/S with respect to DeLP proof theory have been
proved (Cecchi & Simari 2004). In the following we present
some notions oS, for more details see (Cecchi & Simari
2000; 2004).

Let X be a set andzy,...z,} C X, X* is the set of
finite sequences oveX and[z; ... z,] denotes the sequence
of the elementsy, ... x,. We write|s| for the length of a
finite sequence ang for theith element ofs, 1 < i < |s].
Concatenation of sequences is indicated by juxtapositfon.

t = su for some sequence, then we say that is a prefix
of t. Let Pref(S) be a set of prefix o, thensS is prefix
closed ifS = Pref(S).

In order to use a game to capture the dialectical procedure,
we need to define in a declarative way the movements of
such game: the argument. The followings definitions are
based on the notation introduced in (Lifschitz 1996).

Definition 2 Let X be a set of ground literals. The s&t
is rigorously closed under a de.l.p2, if for every strict
rule Head «— Body of P, Head € X wheneverBody C

X, and for every defeasible rul&ead’ — Body' of P,

Head € X wheneverBody' C X. The setX is consistent
if there is no literall such that{ L, L} C X. Otherwise, we
will say that X is inconsistent

We say thatX is logically closedif it is consistent or it is
equal toLit.

Intuitively, if the set of knowledge of an agent is rigorausl
closed under a@e.l.p, the agent will not believe in a literal
that she cannot explain.

Definition 3 Let ¥ be a set of strict and defeasible rules.
Theset of rigorous consequencesder the ruled, denoted
Cngr(P), is the least set of literals w.r.t. inclusion, such that
it is logically closed and rigorously closed under Let P

be ade.l.p, theset of rigorous consequencekP is defined
asCng(P).

such that satisfies (1) and (2).

For convenience we will simply speak of argument in-
stead of argument structure whenever this does not lead to
misunderstandings. Let’s introduce game concept&sd
semantics.

Definition 5 Let P = (II, A) be ade.l.p, h a literal and
(A, h) an argument structure fér. A gamefor (A4, h) with
respect tdP, that we denoté&/({A, L), P), is a structure

(Ma(a, 1y, 7y, Jaa, oy, »ys Paga, 1y, 7))
where

o Mg, 1), p) IS aset of argument structure.

. JG((A, Ly, P) : MG((A,L),P) x I — {P, O} wherel is an
enumerable index;

® Poqa,ny,?) € M&(a, 1y, wherePg (4, 1y, »y iS@anon-
empty, prefix-closed set.
Each sequencesof P 4, 1y, ») satisfy:

1. s = [{A, h)]s’, s’ possibly empty.

2. Foralli, 1 <1< |[s]

P

Jaowa, y, 7 (si-1,1— 1)

Jaqa, Ly, (51,1)
JG((A, L), 7>)(5m Z)

P =0andO = P.

3. If s € Pg(a, 1y, »), then for each argument structure
(A, ho) that is a legal move fos),|, there exists a se-
quencet € Pg(a, 1), p), Such thatt = s[(As, ha)].

4. No other sequence belongsig 4, 1), 7)-

Movements in a game are the introduction of arguments. For
every argument for a literal L we can built a game whose
first move is(A, L). Thus, a family of games will be ob-
tained considering all the arguments for

literal un-
ooy (A, )
P and

the

Definition 6 Let P be a delp, h a
der the signature of P, (A, h),
all the argument structures ofh under
G(<A13h>7p)7G(<A27h>aP)a ,G(<An,h>,73)
corresponding games to the arguments .of

{G({A1,h),P),G({A2,h),P), ... ,G((An, h),P)}
is thegame family of. and we denote it a&'(h, P).



Definition 7 Let a be the first proponent movement in the
game. A sequenceis complete ifs = [a]s1, with s; poten-
tially empty, then there is no movemeite Mc((a, 1), )
such thatfa]s,[b] € Pg(ua,1),»)- A sequences is pre-

ferred if each opponent movement has a proponent answer.

In other words, a sequenees preferred if|s| is odd.

Definition 8 A strategy over a gam@ is a set of sequences

S, such that for all sequencec S, either:

e sis preferred; or

e there exists other sequensge € S, such thats’ is pre-
ferred ands ands’ has a prefix, |t| = n, n is even and
Spt1 7 S;wrl'

Definition9 Let P be a delp, h € Lit and
G{A,L),P) € F(h,P). We say thatP wins the game
G({A, L),P) orthatG({A, L), P) is won by R if the set
of complete sequences 6% (4, 1y, p) iS an strategy. Other-
wise, we say tha® wins the gamer thatG((A, L), P) is
won by Q

A player can win a game even though he does not win

every complete sequence in such game. In (Prakken & Sar-

Theorem 1 LetP be ade.l.p.andL aliteral. L is warranted
underP if and only if L belongs to the séf’ or L belongs
to the setf’ of the minimal G-model$T’, F') of P underGS
semantics.

We have briefly presented the DelLP language, its proof
theory and its declarative game-based semagitsNow,
we will be able to analyze the system and study some com-
plexity properties.

Discussion ongS Complexity

DeLP is a defeasible reasoning system where every conse-
guence of ale.l.p.is analyzed considering all the arguments
for and against it. The trivalued game semangics char-
acterizes such reasoning by two sétand F', sincel U F

is the set of all warranted literals. Undecided literalstage
remaining literalsl. for which there is no warrant for it nor

for its complement. When considering DeLP in relation to
game semantics, there are two relevant computational deci-
sion problems to analyze in the context adal.p.P:

e GAMESAT: Deciding whether there is a game for a literal
« won by the proponer® in the context of ale.l.p.P.

tor 1997) the authors have developed an argument-based ex- NOWINGAME: Deciding whether there is no game for a

tended logic programming system which differs from DeLP
in its winning rule: a player wins a dialogue tree if and only
if he wins all the branches of the tree.

Definition 10 Let P be ade.l.p. A game-based interpre-
tation for P, or G-Interpretation fofP for short, is a tuple
(T, F), such thafl’ and F" are subsets of atoms of the under-
lying signature ofP and7' N F = @.

In the previous definitiofi” stands for true whilé” stands
for false. The set of atomsNDECIDED is defined as the set
U= Litt —{TUF}.

Each game can finish in two possible ways: won by the
proponentP or won by the opponerD. There is no possi-
bility for a draw. As the first move is made by the we are
interested in those games won by this player.

Definition 11 Let P be ade.l.p, h an atom of the under-
lying signature ofP, F(h,P) the game family forh and
F(h,P) the game family for, under ade.l.p.P. A game-
based model fof?, that we name G-Model oP, is a G-
interpretation(T’, F') such that:

o Ifthere exists a gam@(({A, k) in the family 7 (h, P) won
by P, thenh belongs tarl".

o If there exists a gam@'((A4, h), P) in the family 7 (h, P)
won byP, thenh belongs toF'.

Since we only consider literals under the signature of
de.l.p, the G-model definition does not contemplate the an-
SweruNKNOWN. The minimal G-model defines a sound and
complete semantiagsS for DeLP (Cecchi & Simari 2004).
We will say thatGS entails a literall from ade.l.p.P, de-
noted byP |=gs L, wheneverL € T or L € F, being

(T, F) the minimal G-model ofP.
The following theorem relates proof theory and game-

based semantics, showing soundness and completeness.

literal o neither for the complement of won by the pro-
ponentP in the context of ae.l.p.P.

The former problem involves just finding a game that is
won by the proponent. In order to capture the latter, it is
necessary to find all the games for the literal and for its com-
plement, and to establish that none of them is won by the
proponent.

A positive GAMESAT answer for a giverde.l.p.? and a
literal L implies thatL € T, being(T, F') the minimal G-
model, i.e.,P [=gs L. A positive GAMESAT answer forL
means tha. € F' in the minimal G-model, i.eP =gs L.

The NOWINGAME decision problem for de.l.p.? and a
literal L is equivalent to determining if given the minimal
G-model(T, F)of P, L € Litt —{T UF},i.e,P rgs L
andP b&gs L.

In this case, three interesting situation can be contem-
plated, and establish the followings decision problems:

e Whether there is no game for a literdl, neither for its
complementL.. The game families for a literal. and
for its complement., F (L, P) andF (L, P) respectively,
are empty. L has no argument neither for nor against it.
Therefore, the agent has no information about such query.

e Whether there is no game for a literdl, and the non
empty set of all games in the family of its complement
L are won by the opponentThe game family for a lit-
eral L, F(L,P), is empty and only games won by the
opponent are in the non empty fami§( L, P). L has no
argument for and all the arguments for its complement are
defeated. Therefore, the agent has no informationZfor
and he cannot defend its complement. In a similarly way,
we can define the case where the agent cannot defend a
literal L, and has no information about its complement.



e Whether all games in the non empty families foand The complexity of computing arguments

for its complemenL are won by the opponent (L, P) Arguments and counterarguments are the movements in
andF(L,P) are non empty set and all the argument are g game, and hence the core of DeLP. Dung's formal-
defeated. The agent cannot defend any argument neitherism (Dung 1995) and some extensions that have been devel-
for nor against the literal. oped (Bench-Capon 2002; 2003; Amgoud & Cayrol 2002),

In order to determine the computational complexity of the ~©ffer a powerful tool for the abstract analysis of defeasibl
decision problems introduced above, we will study DeLP reasoning. However, these approaches operate with argu-
from two approaches: combined and data Comp|exity_ Com- ments and their at.taCk and defeat relatl.on atan abStraﬂ lev
bined complexity of a fragment of logic programming has avoiding to deal with the underlying logical language used t
been defined and used in (Dantsiral. 2001): structure the arguments. On the other hand DelLP dogs con-
struct the arguments and analyzes the defeater relatmnshi

) h o X Thus, studying the decision problem: “is a given subset of
is the complexity of checking if for variable programs defeasible rules an argument for a literal undded.p?” is

‘P and variable ground atoms$, P = A. of central importance.

On the other hand, the notion of data complexity is borrowed ~ Following the definition of argument this problem has
from relational database theory (Vardi 1982). Databases ar three parts: id. a consequence &f U A?, isII U A consis-
nowadays the main tool for storing and retrieving very large tent?, and is there a subsét of A such that it is consistent
sets of data. Data complexity allows us to study DeLP as a with IT and that together withl derivesL?
query language measuring its complexity focus on the size  Let P = (I, 1z U A) be ade.l.p, L be a literal and
of the databases, and using defeasible and strict rules for A C A. The first condition of definition 4, that involves rig-
inference purpose. Data complexity is a key measure to de- orous consequences conceptis Cng(ITU A). In (Cec-
termine the efficiency of argumentation system implementa- chi & Simari 2000), we have defined the following transfor-
tions based on database technologies. mation ® from ade.l.p.into a propositional definite logic
For methodological and complexity issues, it is important program, i.e., a propositional logic program with just Horn
to distinguish in ade.l.p.the input data from the inference  clauses. Letl be an atom®(A) = A, &(~ A) = A’ where
rules. Thus, hereafter, we will dencie= (I1g, Iz U A), A’ is a new atom not in the signature of tde.l.p.and the
wherellr is afinite set of ground facts, afif; UA is a finite transformation of a conjunction (A, B) = ®(A), ®(B).
set of ground strict and defeasible rules. Making an analogy ®(H — B) = ®(H) < ®(B) and all other rules remain
with database conceptH, represents the input databases, the sameb(H « B) = ®(H) «— ®(B) . We will use this
also called theextensional partandIlz U A are the infer- transformation, and the following lemma in order to reduce
ence rules, called thiatensional partof the database. We  the rigorous consequences ofi@.l.p.into consequences of
define a Boolean query as a finite set of strict and defeasible propositional Horn clauses.
rules together with a ground literal The intended intuitive
meaning of defining such query is the following: we want |emma 1 Let DP be a definite logic program, antit be

to know whether a literal is entailed bygS from Il U A the minimal model oD P, thenM = Cng(DP).
together with the databa$gx.

Following the principle and notions above, in the context ~ We are interested in computing the time complexity of
of DeLP we will define data, program and combined com- verifying whetherL, € Cng(ITU A). We shall construct a
plexity as follows. logic program with just Horn clauses, denoté@® (11, A, L)

such thatl € Cnr(ITU A) ifand only if HP(II, A, L) =

Definition 12 Let Q2 be any of the decision problems intro-  y€s .

Complexity of (some fragment of) logic programming:

duced aboveP = (II, [z UA) and(Ilz UA, L) a query: Suppose thatly, ..., A, are all the atoms il U .A. We
. . . defineHP(IL, A, L) as follows:
e Thedata complexityf Q2 is the complexity of2 when the
query is fixed, and the database varies, i.e., parameters HP(IL,A L) = &) Ud(A) U {yes — B(L)}U
IIr U A andL are fixed. {yes — ®(4;),®(A;) : 1 <i < n}

e Theprogram or expressiogomplexity of2 is the com-
plexity of 2 when the database instance is fixed, and the  Even though thesAT decision problem isNP-complete,

query varies, i.e., the parametéf. is fixed. both checking whether a definite propositional logic pro-
e The combined complexitgf €2 is the complexity where gram DP satisfies a ground atord, i.e., DP | A,
every parametdip, IIr U A andL vary. and HORNSAT, i.e., the decision problem of whether or

not there is a truth assignment that satisfies a collection

EXpression and combined Complexity are quite close and of Horn C|ausesl ar@_comp|ete (Dantsiret al. 2001’
they are rarely differentiated. For this reason we will only - papadimitriou & Yannakakis 1997).

discuss data and combined complexity.

In order to carry out this complexity analysis we will first | ajyma 2 HP(IL, A, L) is a transformation from de.l.p.P

focus on the complexity of determining whether there is an 14 propositional Horn clauses such that verifying whethe
argumentA for a literal L. Then we will study if the game 3 jiteral L belongs toCny(P) is equivalent to verifying
played with initial moveA is won by the proponent.



Algorithm: Minimal
Input: .4 an argument for a literal,, andII a set of strict
rules.
Output: true if A is a minimal argument fof,, false other-
wise
minimal=true
Aux= A
While minimal and notdux = @ do
selectH — B €Aux
A =A-{H—= B}
if h € Cnr(TTUA")
then minimal=false
else Aux= Aux -{ H — B}

Figure 1: Algorithm for verifying if a set of defeasible rsle
is minimal with respect to set inclusion for deriving a laér
L.

whetheryes is entailed from the transformed propositional
Horn program. Thusl. € Cng(P) reduces t@P |= yes,
beingDP a propositional Horn program.

Proof:
that:

1. L € Cngr(ITU A) ifand only if HP(I1, A, L) = yes.

In order to prove our claim, we have to establish

We will consider two cases:

e ITU Ais consistent.
L e Cng(ITU A)ifand only if ®(L) € ®(Cng(IIU
A))ifand only if (L) € Cnr(®(IIU A))(see (Cec-
chi & Simari 2000)) if and only if, by lemma 1®(L)
is in the minimal model of®(IT U A) if and only
if HP(II, A,L) = yes by the definition of minimal
model, the monotonicity property and the use of the
rule yes — ®(L).

e ITU Aisinconsistent.
L € Cng(II U A) = Lit if and only if there ex-
istsi,1 < i < n, such thatb(L;) and®(L;) are in
®(Cng(ILU A)) if and only if ®(L;) and®(L;) are
in the minimal model ofHP(II, A, L) if and only if
HP(II, A, L) = yes by definition of minimal models,
monotonicity property and the use of the rygles «—
D(L;), P(L;).

2. HP is computed in logarithmic space: the transformation
is quite simple, and is feasible in logarithmic space, since

rules can be generated independently of each other except

those of the formyes — ®(L;), ®(L;) which depends on
the literal in the input.
ThereforeHP (11, A, L) is a reduction froml. € Cnr(ITU
A) into propositional Horn clauses. u

Theorem 2 Let P = (Ilp,IIp U A) ade.l.p, A C A, and
L a literal. Determining whethel € Cngr(ITU A) is P-
complete.

Proof: e Membership: Given a definite logic program
P the least fixpointl’z° of the operatofl’» can be com-
puted in polynomial time (Papadimitriou 1994; Dantsin

et al. 2001) : the number of iterations is bounded by the
number of rules plus one. Each iteration step is feasible
in polynomial time. Thus finding the minimal model of a
logic program with just Horn clauses is i(Dantsinet

al. 2001).

Bylemma2,L € Cng(IIUA) has been reduced to propo-
sitional logic programming. Thereforé,e Cng(IIU A)
isinP.

e Hardness:Horn rules are strict rules in@e.l.p, and the
minimal model of a definite logic prografP is equal to
Cngr(DP). Therefore, by applying reduction by general-
ization, we have thaDP = L reduce taL € Cng(DP).
Propositional logic programming B-complete (Dantsin

et al. 2001). This suffices to complete the proof.
]

Until now we have proved that the first condition of ar-

%]umentation definition i®-complete. Now we will analyze
the rest of the issues we need for computing an argument.

We will denote the cardinality of the language Hyit| and
defeasible rules cardinality By |.

In Figure 1, we present an algorithm for verifying whether
a set of defeasible rules is minimal with respect to set inclu
sion for entail a literalL. Worst case of the minimality con-
dition is considered assuming that the argument has at most
|A| defeasible rules, i.eA is an argument for some literal.
Computing the minimality condition involveg\| loops ver-
ifying that L € Cngr(II U A’), which is inP. Thus, this
problem is solvable in polynomial time, and, thereforesit i
in P.

Finally, to check whether the set of defeasible rules is
consistent under de.l.p, we verify that there is no atom
such that the atom and its complement are members of
Cngr(IIUA). Inthe worst case, whefin z (IIUA) is consis-
tent, this algorithm must control every atom in the signatur
of thede.l.p. Thus, to check if it is consistent is proportional
to the number of atomid.it|/2 and therefore it is irP.

Theorem 3 The decision problem “is a given subset of de-
feasible rules an argument for a literal undedel.p?” is
P-complete.

Proof:

Membership: (sketchifrom the above development it fol-
lows membership t®.

Hardness: We employ a reduction fro®P = L, being
DP a propositional Horn program. Consider the following
transformation-(DP) = DP’ = (II, A), wherell = DP
and A is empty. r is a transformation computed in loga-
rithmic space such that whenever a litefais entailed by a
propositional Horn prograr®P, the decision problem “is a
given subset ofA = @ an argument fof. underDP"” finish

in an accepting state.

L is in the minimal model of a propositional Horn pro-
gram if and only if L. € Cngr(DP) if and only if @ is an
argument forL, since is minimal and consistent witl, if
and only if “is a given subset oA = @ an argument for



L underDP"” finish in an accepting state. Thereby estab-
lishing that the decision problem “is a given subset of de-
feasible rules an argument for a literal undedeal.p?” is
P-complete. u

Our final aim is to determine the complexity of comput-

ing the set of all the arguments undedel.p. This is moti-
vated in thatcAMESAT and NOWINGAME require for play-

ing a game to compute every argument that defeats each ar-

gument introduced in a previous move. A subdetC A
may be a potential argument of different literals in the lan-
guage. Thus, the maximum number of checks for potential

we will first analyze the dialectical tree structure over the
size of the facts and the strict and defeasible rules.

The dialectical tree is explored in a complete depth first
way, as minimax does. If the maximum depth of the tree is
m, and there aré legal movements at each point, then the
time complexity will beO(b™)(Russell & Norvig 2003). If
implement the technique alpha-beta pruning, and consider-
ing that successors are examined in random order, then the
time complexity will be roughhyO (b )(Russell & Norvig
2003). The maximum depth of a dialectical tree for an ar-

gument under de.l.p.with |A| defeasible rules igl2!, i.e.,

arguments that depends on the size of the set of defeasiblewe can consider every potential argument in one branch of

rules and on the size dfit, is | Lit| * 2141,

Lemma 3 Let AP be the polynomial time needed for the
decision problem “is a given subset of defeasible rules an
argument for a literal under ade.l.p?”. Then, the upper
bound time for computing all the argumentg ist| « 2!4! «

AP.

The result above states an exponential upper bound for
computingX’, the set of all the arguments in Dung’s formal-
ism (Dung 1995).

Even though we must verify whether every subset of
A is an argument for every literal in the language of the
de.l.p, because the consistency condition in the defini-
tion of argument,A C A cannot be an argument for a
literal and for its complement, so we will consider only
[Litl 4 9lA1 = | Lit| % 2141-1 potential arguments in order to
play a game or equivalently to build the dialectical treeisTh
upper bound could be improved by considering minimality
over the arguments, i.e., i, C A would be an argument
for aliteral L if A5 isanargument of. andA; C A;.

Finally, we consider the argument existence decision
problem.

Corollary 1 (Argument ExistenceThe decision problem
“whether there is an argument for a litedaunder ade.l.p”
is NP.

Proof: We can guess any subsetAf and verify whether
this subset is an argument for a litefalinderde.l.p.in poly-
nomial time. This proves membershiphP. u

These results contrast with those of (Parsons, Wooldridge,
& Amgoud 2003), where determining whether there is an ar-
gument for a formula is 4’ -complete. Even thought there
are some similarities between argument definitions, thiey di
fer in the underlying logic. While in DeLP approach an
argument is a subset of defeasible rules, and the inference
mechanism to obtain it is logic programming based, an ar-
gument in the formalism described in (Parsons, Wooldridge,
& Amgoud 2003) is a subset of formulas of a propositional
language, and stands for classical inference.

Data Complexity for DeLP

In order to determine the upper bound for the data complex-
ity of the decision problemsAMESAT and NOWINGAME,

the tree. Any argument can appear more than once in the
tree but at most once in every branch, because of the accept-
able argumentation line definition. What about branch fac-
tor: there existgLit|/2 literals that can be in conflict with
the last argument. These literals may have at ra@stpo-
tential arguments. So our branching factor is in the worst
case|Lit|/2 x 212!, Thus, exploring the dialectical tree as
minimax does is 0O((|Lit| » 2141-1)2""),

Every time we must insert a neighbour naleof a node
A in the tree structure or equivalently, when a player makes
a move, we must check if it is a legal move in the game, i.e.,
if B attacks and defeatd, and if B does not introduce in-
consistency. In order to determine whetligis a defeater
of A, we must take into account the preference criterion be-
tween arguments. Any preference criterion defined among
arguments could be used in DeLP. For this reason, the com-
plexity class of the following decision problem “whether an
argument can be considered in the tree structure of a game”
will be left parameterized in the clags

Theorem 4 Let C be the complexity class for the decision
problem:“whether an argument can be considered in the tree
structure of a game”. The upper bound for data complexity
of GAMESAT is NP

Proof: For fixedIIr U A, the size of the dialectical tree
for an argument.A, h) is polynomial in the size of the lit-
erals inllz. Furthermore, computing each argument is in
P, and considering each argument in the tree structure is in
C. In order to decide whether a literalbelongs to the set

T of the minimal G-model, we guess for an argument of
such that the game played from this argument is won by the
Proponent. The number of arguments is polynomial when
ITr U A is fixed, and determining whether the game is won
by the Proponent can be done with a C oracle. This proves
membership ilNPC. u

SincCeNOWINGAME is a conjunction OfGAMESAT com-
plements an immediate corollary to the result above follows
naturally.

Corollary 2 Let C be the complexity class for the decision
problem:“whether an argument can be considered in the tree
structure of a game”. The upper bound for data complexity
of NOWINGAME is coNPC.



Decision Complexity
Problem
IsL € Cnr(Rules)? P-complete
Is (A, h) an argument P-complete
Argument Existence NP
GAME Data ComplexityNPY
NOWINGAME Data Complexityro — NPY

Table 1: Problems studied, and the main complexity results
obtained.

Even though we have not analyzed in depth the complex-
ity for computing the preference criterion, we illustratést
concept with two different cases.

In (Chedievar & Maguitman 2004a; 2004b), the authors
use specificity (Simari & Loui 1992) as a syntax-based cri-
terion among conflicting arguments, preferring those argu-
ments which are more informed or more direct, in order to

assess natural language usage based on the web corpus an

to evaluate and rank search results, respectively. Comgputi
specificity depends strongly on the geft™!.

Other DelLP implementations use a static preference re-
lation (Che@evaret al. 2004). In this case, the preference
criterion is computed by comparing arguments values. Such
values are obtained through different mathematical foasul
applied to the certainty of a formula in the language. Com-
puting such preference criterion involves just a compariso
between two certainty values. However, an extra cost is con-
sidered in the argument construction procedure, since the
certainty value is computed keeping a trace of all uncertain
information used to derive a goal.

Conclusion and Future Work

We have analyzed complexity of DeLP through tGé&
semantics, pointing out some relevant decision problems.
In particular, we have analyzed in depaMESAT and
NOWINGAME. In order to achieve our aim, we have distin-
guished database and a query froded.p, and we have de-
fined data, expression and combined complexity in the con-
text of DeLP. As far as we know, argumentation systems

have not been studied yet as a query language, and, there-

fore, there is no previous data complexity analysis for de-
feasible reasoning. Table 1 summarizes the problems stud-
ied and the main complexity results obtained.

As DelLP do not assume as input the argument set, the
first results that has been established where related te argu
ments, the movements of a game. We have focused on the
existence of an argument in order to play a game, and on ver-
ifying whether a set is an argument. We state an exponential
upper bound for the set of all the arguments. Because of the
underpinning logic of DeLP our complexity results are a bit
better than those based on classical logic.

Data complexity results 0BAMESAT and NOWINGAME
give a guideline for determining expressive power for DeLP.
Since our results are parameterized, we can state a lower

bound orNP, otherwise known a&1, which coincides with
the class of properties of finite structures expressiblein e
istential second-order logic (Fagin 1974).

When analyzing Data complexity we have fixed the query
and we have parametrized the preference criteria. Thus an
interesting topic for future research is to study to whatekt
this results can be applied to others rule-based argumenta-
tion systems whose theory proof is rather similar.

As future work we will analyze combined complexity of
the decision problems introduced. We are studying the ex-
pressive power of DeLP in order to compare this system with
other non monotonic formalisms.
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