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Abstract

Defeasible Logic Programming (DeLP) is a general argumen-
tation based system for knowledge representation and reason-
ing. Its proof theory is based on a dialectical analysis where
arguments for and against a literal interact in order to deter-
mine whether this literal is believed by a reasoning agent. The
semanticsGS is a declarative trivalued game-based semantics
for DeLP that is sound and complete for DeLP proof theory.
Complexity theory is an important tool for comparing differ-
ent formalism and for helping to improve implementations
whenever it is possible. In this work we address the prob-
lem of studying the complexity of some important decision
problems in DeLP. Thus, we characterize the relevant deci-
sion problems in the context of DeLP andGS, and we define
data and combined complexity for DeLP. Since DeLP com-
putes every argument from a set of defeasible rules, it is of
central importance to analyze the complexity of two decision
problems. The first one can be defined as “Is a set of defea-
sible rules an argument for a literal under a defeasible logic
program?”. We prove that this problem isP-complete. The
second decision problem is “Does there exist an argument for
a literal under a defeasible logic program?”. We prove that
this problem is inNP. Furthermore, we study data complex-
ity of query answering in the context of DeLP. As far as we
know, data complexity has not been introduced in the context
of argumentation systems.

KEYWORDS: Argumentation Systems, Defeasible Rea-
soning, Logic Programming, Game-based Semantics,
Complexity

Introduction
Defeasible Logic Programming (DeLP) is a general argu-
mentation based tool for knowledge representation and rea-
soning (Garćıa & Simari 2004)1. Its proof theory is based
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by the National Research Council (CONICET), ARGENTINA.

1The interested reader can find an on-line interpreter for DeLP
in http://lidia.cs.uns.edu.ar/DeLP

on a dialectical analysis where arguments for and against
a literal interact in order to determine whether this literal
is believed by a reasoning agent. The semanticsGS is a
declarative trivalued game-based semantics for DeLP that
links game-semantics (Abramsky & McCusker 1997) and
model-theory. Soundness and completeness ofGS with re-
spect to DeLP proof theory have been proved (Cecchi &
Simari 2004).

Complexity theory is an important tool for comparing dif-
ferent formalism, and for helping to improve implementa-
tions whenever it is possible. For this reason, it is important
to analyze the computational complexity and the expressive
power of DeLP. The former tells us how difficult it is to an-
swer a query, while the latter gives a precise characterization
of the concepts that are definable as queries.

Even thought complexity for nonmonotonic reasoning
systems has been studied in depth for several formalisms
such us default logic, autoepistemic logic, circumscription,
abduction and logic programming (Cadoli & Schaerf 1993;
Dantsinet al. 2001) until recently not many complexity re-
sults for argumentation systems have been reported.

This situation can be explained in part by the fact that,
historically, implementations of argumentation systems have
been limited to areas with no real time response restriction
(see (Verheij 1998; Gordon & Karacapilidis 1997)). Re-
cently, however, several applications have been developed,
and implemented using argumentation systems related, for
instance, with multiagent systems and web search (Atkin-
son, Bench-Capon, & Mc Burney 2004; Chesñevar & Ma-
guitman 2004a; 2004b; Bassiliades, Antoniou, & Vlahavas
2004). Scalability and robustness of such approaches heav-
ily depend on the computational properties of the underly-
ing algorithms. It is hence crucial to study these properties
in order to expand the application fields of argumentation
systems.

Different computational complexity results (Dimopoulos,
Nebel, & Toni 2002; Bench-Capon 2003; Amgoud & Cayrol
2002; Dunne & Bench-Capon 2002) have been presented on
argumentation abstract framework (Bondarenkoet al. 1997;
Dung 1995), based on admissibility and preferability seman-
tics. However, those results do not apply directly to DeLP,
because its semantics are quite different. Another notable
study of the computational complexity of defeasible systems



has been done in (Maher 2001). But, defeasible theory an-
alyzed in this work greatly differs from DeLP in several
points, such as knowledge representation (facts and strict
rule, defeasible and defeaters rules) and their proof theory.

When measuring the complexity of evaluating queries in
a specific language, we distinguish between several kinds
of complexity according to (Vardi 1982; Papadimitriou &
Yannakakis 1997; Dantsinet al. 2001). Data complexity
is the complexity of evaluating a specific query in the lan-
guage, when the query is fixed, and we study the complexity
of applying this query to arbitrary databases; the complex-
ity is thus given as a function of the size of the database.
Program or Expression complexityappears when a specific
database is fixed, and we study the complexity of applying
queries represented by arbitrary expressions in the language;
the complexity is given as a function of the length of the ex-
pression. Combined complexityconsiders both query and
database instance as input variables.

In this work we are concerned with the study of complex-
ity of some important decision problems of DeLP. The sys-
tem and its asociated game semanticsGS are analyzed intro-
ducing relevant decision problems in relation to the possible
query answers.

Since DeLP builds the arguments from a defeasible logic
program results of central importance to consider and eval-
uate two questions: “is a set of defeasible rules an argument
for a literal under a defeasible logic program?” which has
been proved to beP-complete, and does there exit an argu-
ment for a literal under a defeasible logic program? which
has been proved to be inNP.

We define data, expression and combined complexity in
the context of DeLP, in order to evaluate the efficiency of
DeLP implementations. In particular, we study data com-
plexity of query answering to assess DeLP applications over
database technologies. As far as we know data complexity
has not been introduced in the context of argumentation sys-
tems.

The paper is structured as follows. In the following sec-
tion we briefly outline the fundamentals of DeLP, and de-
scribe the declarative game-based semanticsGS. Then, we
discuss DeLP throughGS semantics pointing out the deci-
sion problems that are of central importance, and we define
data, expression and combined complexity in the context of
DeLP. Afterwards, we give complexity results on the exis-
tence of an argument for a literalL under a defeasible logic
programP, and on the decision problem of whether a sub-
set of defeasible rules is an argument for a literalL under
P. Next, we analyze data complexity for DeLP, and we
present complexity results for two decision problems on en-
tailment. In the last section, we summarize the main con-
tributions of this work, and we present our conclusions and
future research lines.

DeLP and Game SemanticsGS
We will start by introducing some of the basic concepts in
DeLP (see (Garćıa & Simari 2004) for complete details). In
the language of DeLP a literalL is a atomA or a negated
atom∼A, where∼ represents the strong negation in the
logic programming sense. The complement of a literalL,

denoted asL, is defined as follows:L =∼A, if L is an
atom, otherwise ifL is a negated atom,L = A. Let X be
a set of literals,X is the set of the complement of every
member inX.

Definition 1 A strict rule is an ordered pair, denoted
“Head ← Body”, where “Head” is a ground literal, and
“Body” is a finite set of ground literals. A strict rule
with headL0 and body{L1, . . . Ln, n > 0} is written as
L0 ← L1, . . . Ln. If body is the empty set, then we write
L0., and the rule is called aFact. A defeasible ruleis an
ordered pair, denoted “Head —≺ Body”, where “Head” is
a ground literal, and “Body” is a finite, non-empty set of
ground literals. A defeasible rule with headL0 and body
{L1, . . . Ln, n > 0} is written asL0

—≺ L1, . . . Ln.
A defeasible logic programP, abbreviatedde.l.p., is a set
of strict rules and defeasible rules. We will distinguish the
subsetsΠF of facts,ΠR of strict rules,Π = ΠF ∪ ΠR and
the subset∆ of defeasible rules.

Intuitively, whereasΠ is a set of certain and exception-free
knowledge,∆ is a set of defeasible knowledge, i.e., tentative
information that could be used, whenever nothing is posed
against it.

By definition ade.l.p.may be an infinite set of strict and
defeasible rules but for complexity analysis we restrict our-
selves to finite defeasible logic programs.

We denote byLit the set of all the ground literals that
can be generated considering the underlying signature of a
de.l.p.an we denote byLit+ the set of all the atoms inLit.

DeLP proof theory is based on developments in non
monotonic argumentation systems (Pollock 1987; Simari &
Loui 1992). Anargument for a literalL is a minimal subset
of ∆ that together withΠ consistently entailsL. The no-
tion of entailment corresponds to the usual SLD derivation
used in logic programming, performed by backward chain-
ing on both strict and defeasible rules, where negated atoms
are treated as a new atom in the underlying signature. Thus,
an agent can explain a literalL, throughout this argument.

In order to determine whether a literalL is supported from
a de.l.p.a dialectical tree forL is built. An argument forL
represents the root of the dialectical tree, and every other
node in the tree is a defeater argument against its parent. At
each level, for a given a node we must consider all the argu-
ments against that node. Thus every node has a descendant
for every defeater. A comparison criteria is needed for deter-
mining whether an argument defeats another. Even though
there exist several preference relations considered in thelit-
erature, in this first approach we will abstract away from that
issue.

We will say that a literalL is warranted if there is an ar-
gument forL, and in the dialectical tree each defeater of the
root is itself defeated. Recursively, this leads to a marking
procedure of the tree that begins by considering the fact that
leaves of the dialectical tree are undefeated arguments as a
consequence of having no defeaters. Finally, an agent will
believe in a literalL, if L is a warranted literal.

There exist four possible answers for a queryL: YES if L
is warranted,NO if L is warranted (i.e., the complement ofL



is warranted),UNDECIDED if neitherL nor L are warranted,
andUNKNOWN if L is not in the underlying signature of the
program.

We have briefly given an intuitive introduction to the
DeLP language and the dialectical procedure for obtain-
ing a warranted conclusion. For complete details on DeLP
see (Garćıa & Simari 2004).

Games have an analogy with a dispute and, therefore, that
analogy extends to argument-based reasoning. A dispute can
be seen as a game where in an alternating manner, the player
P, the proponent, starts with an argument for a literal. The
playerO, the opponent, attacks the previous argument with
a counterargument strong enough to defeat it. The dispute
could continue with a counterargument of the proponent,
and so on. When a player runs out of moves, i.e., that player
can not find a counterargument for any of his adversary’s ar-
guments, the game is over. If the proponent’s argument has
not been defeated then she has won the game.

The semanticsGS is a declarative trivalued game-based
semantics for DeLP that links game-semantics (Abramsky
& McCusker 1997) and model theory. Soundness and com-
pleteness ofGS with respect to DeLP proof theory have been
proved (Cecchi & Simari 2004). In the following we present
some notions ofGS, for more details see (Cecchi & Simari
2000; 2004).

Let X be a set and{x1, . . . xn} ⊆ X, X∗ is the set of
finite sequences overX and[x1 . . . xn] denotes the sequence
of the elementsx1, . . . xn. We write |s| for the length of a
finite sequence andsi for the ith element ofs, 1 ≤ i ≤ |s|.
Concatenation of sequences is indicated by juxtaposition.If
t = su for some sequenceu, then we say thats is a prefix
of t. Let Pref(S) be a set of prefix ofS, thenS is prefix
closed ifS = Pref(S).

In order to use a game to capture the dialectical procedure,
we need to define in a declarative way the movements of
such game: the argument. The followings definitions are
based on the notation introduced in (Lifschitz 1996).

Definition 2 Let X be a set of ground literals. The setX
is rigorously closed under a de.l.p.P, if for every strict
rule Head ← Body of P, Head ∈ X wheneverBody ⊆
X, and for every defeasible ruleHead′ —≺ Body′ of P,
Head′ ∈ X wheneverBody′ ⊆ X. The setX is consistent
if there is no literalL such that{L,L} ⊆ X. Otherwise, we
will say thatX is inconsistent.
We say thatX is logically closedif it is consistent or it is
equal toLit.

Intuitively, if the set of knowledge of an agent is rigorously
closed under ade.l.p., the agent will not believe in a literal
that she cannot explain.

Definition 3 Let Ψ be a set of strict and defeasible rules.
Theset of rigorous consequencesunder the rulesΨ, denoted
CnR(Ψ), is the least set of literals w.r.t. inclusion, such that
it is logically closed and rigorously closed underΨ. Let P
be ade.l.p., theset of rigorous consequencesof P is defined
asCnR(P).

Even though rigorous consequences do not reflect the un-
derlying ideas of strict and defeasible rules, they are very
useful for introducing a declarative definition of argument.

Definition 4 Let P = 〈Π,∆〉 be ade.l.p.. We say that
〈A, L〉 is an argument structure for a ground literalL, if A
is a set of defeasible rules of∆, such that:

1. L ∈ CnR(Π ∪ A)

2. CnR(Π ∪ A) 6= Lit

3. A is minimal w.r.t. inclusion, i.e., there is noA′ ⊆ A
such that satisfies (1) and (2).

For convenience we will simply speak of argument in-
stead of argument structure whenever this does not lead to
misunderstandings. Let’s introduce game concept andGS
semantics.

Definition 5 Let P = (Π,∆) be ade.l.p., h a literal and
〈A, h〉 an argument structure forh. A gamefor 〈A, h〉 with
respect toP, that we denoteG(〈A, L〉,P), is a structure

(MG(〈A, L〉, P), JG(〈A, L〉, P), PG(〈A, L〉, P))

where

• MG(〈A, L〉, P) is a set of argument structure.
• JG(〈A, L〉, P) : MG(〈A, L〉, P) × I → {P, O} whereI is an

enumerable index;
• PG(〈A, L〉, P) ⊆ M∗

G(〈A, L〉, P), wherePG(〈A, L〉, P) is a non-
empty, prefix-closed set.
Each sequencess of PG(〈A, L〉, P) satisfy:
1. s = [〈A, h〉]s′, s′ possibly empty.
2. For alli, 1 < i ≤ |s|

JG(〈A, L〉, P)(s1, 1) = P
JG(〈A, L〉, P)(si, i) = JG(〈A, L〉, P)(si−1, i − 1)

P = O andO = P.
3. If s ∈ PG(〈A, L〉, P), then for each argument structure

〈A2, h2〉 that is a legal move fors|s|, there exists a se-
quencet ∈ PG(〈A, L〉, P), such thatt = s[〈A2, h2〉].

4. No other sequence belongs toPG(〈A, L〉, P).

Movements in a game are the introduction of arguments. For
every argumentA for a literalL we can built a game whose
first move is〈A, L〉. Thus, a family of games will be ob-
tained considering all the arguments forL.

Definition 6 Let P be a de.l.p., h a literal un-
der the signature of P, 〈A1, h〉, . . . , 〈An, h〉
all the argument structures ofh under P and
G(〈A1, h〉,P), G(〈A2, h〉,P), . . . , G(〈An, h〉,P) the
corresponding games to the arguments ofh.

{G(〈A1, h〉,P), G(〈A2, h〉,P), . . . , G(〈An, h〉,P)}

is thegame family ofh and we denote it asF(h,P).



Definition 7 Let a be the first proponent movement in the
game. A sequences is complete ifs = [a]s1, with s1 poten-
tially empty, then there is no movementb ∈ MG(〈A, L〉, P)

such that[a]s1[b] ∈ PG(〈A, L〉, P). A sequences is pre-
ferred if each opponent movement has a proponent answer.
In other words, a sequences is preferred if|s| is odd.

Definition 8 A strategy over a gameG is a set of sequences
S, such that for all sequences ∈ S, either:
• s is preferred; or
• there exists other sequences′ ∈ S, such thats′ is pre-

ferred ands ands′ has a prefixt, |t| = n, n is even and
sn+1 6= s′n+1.

Definition 9 Let P be a de.l.p., h ∈ Lit and
G(〈A, L〉,P) ∈ F(h,P). We say thatP wins the game
G(〈A, L〉,P) or thatG(〈A, L〉,P) is won by P, if the set
of complete sequences ofPG(〈A, L〉, P) is an strategy. Other-
wise, we say thatO wins the gameor thatG(〈A, L〉,P) is
won by O.

A player can win a game even though he does not win
every complete sequence in such game. In (Prakken & Sar-
tor 1997) the authors have developed an argument-based ex-
tended logic programming system which differs from DeLP
in its winning rule: a player wins a dialogue tree if and only
if he wins all the branches of the tree.

Definition 10 Let P be ade.l.p.. A game-based interpre-
tation for P, or G-Interpretation forP for short, is a tuple
〈T, F 〉, such thatT andF are subsets of atoms of the under-
lying signature ofP andT ∩ F = ∅.

In the previous definitionT stands for true whileF stands
for false. The set of atomsUNDECIDED is defined as the set
U = Lit+ − {T ∪ F}.

Each game can finish in two possible ways: won by the
proponentP or won by the opponentO. There is no possi-
bility for a draw. As the first move is made by theP, we are
interested in those games won by this player.

Definition 11 Let P be ade.l.p., h an atom of the under-
lying signature ofP, F(h,P) the game family forh and
F(h,P) the game family forh under ade.l.p.P. A game-
based model forP, that we name G-Model ofP, is a G-
interpretation〈T, F 〉 such that:
• If there exists a gameG(〈A, h〉 in the familyF(h,P) won

by P, thenh belongs toT .
• If there exists a gameG(〈A, h〉,P) in the familyF(h,P)

won byP, thenh belongs toF .

Since we only consider literals under the signature of
de.l.p., the G-model definition does not contemplate the an-
swerUNKNOWN. The minimal G-model defines a sound and
complete semanticsGS for DeLP (Cecchi & Simari 2004).
We will say thatGS entails a literalL from ade.l.p.P, de-
noted byP |=GS L, wheneverL ∈ T or L ∈ F , being
〈T, F 〉 the minimal G-model ofP.

The following theorem relates proof theory and game-
based semantics, showing soundness and completeness.

Theorem 1 LetP be ade.l.p.andL a literal.L is warranted
underP if and only if L belongs to the setT or L belongs
to the setF of the minimal G-models〈T, F 〉 of P underGS
semantics.

We have briefly presented the DeLP language, its proof
theory and its declarative game-based semanticsGS. Now,
we will be able to analyze the system and study some com-
plexity properties.

Discussion onGS Complexity
DeLP is a defeasible reasoning system where every conse-
quence of ade.l.p.is analyzed considering all the arguments
for and against it. The trivalued game semanticsGS char-
acterizes such reasoning by two setsT andF , sinceT ∪ F
is the set of all warranted literals. Undecided literals arethe
remaining literalsL for which there is no warrant for it nor
for its complement. When considering DeLP in relation to
game semantics, there are two relevant computational deci-
sion problems to analyze in the context of ade.l.p.P:

• GAMESAT: Deciding whether there is a game for a literal
α won by the proponentP in the context of ade.l.p.P.

• NOWINGAME: Deciding whether there is no game for a
literal α neither for the complement ofα won by the pro-
ponentP in the context of ade.l.p.P.

The former problem involves just finding a game that is
won by the proponent. In order to capture the latter, it is
necessary to find all the games for the literal and for its com-
plement, and to establish that none of them is won by the
proponent.

A positive GAMESAT answer for a givende.l.p.P and a
literal L implies thatL ∈ T , being〈T, F 〉 the minimal G-
model, i.e.,P |=GS L. A positive GAMESAT answer forL
means thatL ∈ F in the minimal G-model, i.e.,P |=GS L.

The NOWINGAME decision problem for ade.l.p.P and a
literal L is equivalent to determining if given the minimal
G-model〈T, F 〉 of P, L ∈ Lit+ −{T ∪F}, i.e.,P 6|=GS L
andP 6|=GS L.

In this case, three interesting situation can be contem-
plated, and establish the followings decision problems:

• Whether there is no game for a literalL, neither for its
complementL. The game families for a literalL and
for its complementL, F(L,P) andF(L,P) respectively,
are empty.L has no argument neither for nor against it.
Therefore, the agent has no information about such query.

• Whether there is no game for a literalL, and the non
empty set of all games in the family of its complement
L are won by the opponent. The game family for a lit-
eral L, F(L,P), is empty and only games won by the
opponent are in the non empty familyF(L,P). L has no
argument for and all the arguments for its complement are
defeated. Therefore, the agent has no information forL,
and he cannot defend its complement. In a similarly way,
we can define the case where the agent cannot defend a
literal L, and has no information about its complement.



• Whether all games in the non empty families forL and
for its complementL are won by the opponent. F(L,P)
andF(L,P) are non empty set and all the argument are
defeated. The agent cannot defend any argument neither
for nor against the literalL.

In order to determine the computational complexity of the
decision problems introduced above, we will study DeLP
from two approaches: combined and data complexity. Com-
bined complexity of a fragment of logic programming has
been defined and used in (Dantsinet al. 2001):

Complexity of (some fragment of) logic programming:
is the complexity of checking if for variable programs
P and variable ground atomsA, P |= A.

On the other hand, the notion of data complexity is borrowed
from relational database theory (Vardi 1982). Databases are
nowadays the main tool for storing and retrieving very large
sets of data. Data complexity allows us to study DeLP as a
query language measuring its complexity focus on the size
of the databases, and using defeasible and strict rules for
inference purpose. Data complexity is a key measure to de-
termine the efficiency of argumentation system implementa-
tions based on database technologies.

For methodological and complexity issues, it is important
to distinguish in ade.l.p.the input data from the inference
rules. Thus, hereafter, we will denoteP = 〈ΠF ,ΠR ∪ ∆〉,
whereΠF is a finite set of ground facts, andΠR∪∆ is a finite
set of ground strict and defeasible rules. Making an analogy
with database concepts,ΠF represents the input databases,
also called theextensional part, andΠR ∪ ∆ are the infer-
ence rules, called theintensional partof the database. We
define a Boolean query as a finite set of strict and defeasible
rules together with a ground literalL. The intended intuitive
meaning of defining such query is the following: we want
to know whether a literalL is entailed byGS from ΠR ∪ ∆
together with the databaseΠF .

Following the principle and notions above, in the context
of DeLP we will define data, program and combined com-
plexity as follows.

Definition 12 Let Ω be any of the decision problems intro-
duced above,P = 〈ΠF ,ΠR ∪∆〉 and(ΠR ∪∆, L) a query:

• Thedata complexityof Ω is the complexity ofΩ when the
query is fixed, and the database varies, i.e., parameters
ΠR ∪ ∆ andL are fixed.

• The program or expressioncomplexity ofΩ is the com-
plexity of Ω when the database instance is fixed, and the
query varies, i.e., the parameterΠF is fixed.

• The combined complexityof Ω is the complexity where
every parameterΠF , ΠR ∪ ∆ andL vary.

Expression and combined complexity are quite close and
they are rarely differentiated. For this reason we will only
discuss data and combined complexity.

In order to carry out this complexity analysis we will first
focus on the complexity of determining whether there is an
argumentA for a literalL. Then we will study if the game
played with initial moveA is won by the proponent.

The complexity of computing arguments
Arguments and counterarguments are the movements in
a game, and hence the core of DeLP. Dung’s formal-
ism (Dung 1995) and some extensions that have been devel-
oped (Bench-Capon 2002; 2003; Amgoud & Cayrol 2002),
offer a powerful tool for the abstract analysis of defeasible
reasoning. However, these approaches operate with argu-
ments and their attack and defeat relation at an abstract level,
avoiding to deal with the underlying logical language used to
structure the arguments. On the other hand DeLP does con-
struct the arguments and analyzes the defeater relationship.
Thus, studying the decision problem: “is a given subset of
defeasible rules an argument for a literal under ade.l.p.?” is
of central importance.

Following the definition of argument this problem has
three parts: isL a consequence ofΠ ∪A?, isΠ ∪A consis-
tent?, and is there a subsetA′ of A such that it is consistent
with Π and that together withΠ derivesL?

Let P = 〈ΠF ,ΠR ∪ ∆〉 be ade.l.p., L be a literal and
A ⊆ ∆. The first condition of definition 4, that involves rig-
orous consequences concept ish ∈ CnR(Π ∪ A). In (Cec-
chi & Simari 2000), we have defined the following transfor-
mationΦ from a de.l.p. into a propositional definite logic
program, i.e., a propositional logic program with just Horn
clauses. LetA be an atom.Φ(A) = A, Φ(∼ A) = A′ where
A′ is a new atom not in the signature of thede.l.p.and the
transformation of a conjunction isΦ(A,B) = Φ(A),Φ(B).
Φ(H —≺ B) = Φ(H) ← Φ(B) and all other rules remain
the sameΦ(H ← B) = Φ(H) ← Φ(B) . We will use this
transformation, and the following lemma in order to reduce
the rigorous consequences of ade.l.p.into consequences of
propositional Horn clauses.

Lemma 1 Let DP be a definite logic program, andM be
the minimal model ofDP , thenM = CnR(DP ).

We are interested in computing the time complexity of
verifying whetherL ∈ CnR(Π ∪ A). We shall construct a
logic program with just Horn clauses, denotedHP(Π,A, L)
such thatL ∈ CnR(Π ∪ A) if and only if HP(Π,A, L) |=
yes .

Suppose thatA1, . . . , An are all the atoms inΠ ∪ A. We
defineHP(Π,A, L) as follows:

HP(Π,A, L) = Φ(Π) ∪ Φ(A) ∪ {yes ← Φ(L)}∪
{yes ← Φ(Ai),Φ(Ai) : 1 ≤ i ≤ n}

Even though theSAT decision problem isNP-complete,
both checking whether a definite propositional logic pro-
gram DP satisfies a ground atomA, i.e., DP |= A,
and HORNSAT, i.e., the decision problem of whether or
not there is a truth assignment that satisfies a collection
of Horn clauses, areP-complete (Dantsinet al. 2001;
Papadimitriou & Yannakakis 1997).

Lemma 2 HP(Π,A, L) is a transformation from ade.l.p.P
into propositional Horn clauses such that verifying whether
a literal L belongs toCnR(P) is equivalent to verifying



Algorithm: Minimal
Input: A an argument for a literalL, andΠ a set of strict
rules.
Output: true if A is a minimal argument forL, false other-
wise

minimal=true
Aux= A
While minimal and notAux = ∅ do

selectH —≺ B ∈Aux
A′ = A− {H —≺ B}
if h ∈ CnR(Π∪A′)

then minimal=false
else Aux= Aux -{H —≺ B}

Figure 1: Algorithm for verifying if a set of defeasible rules
is minimal with respect to set inclusion for deriving a literal
L.

whetheryes is entailed from the transformed propositional
Horn program. Thus,L ∈ CnR(P) reduces toDP |= yes,
beingDP a propositional Horn program.

Proof: In order to prove our claim, we have to establish
that:
1. L ∈ CnR(Π ∪ A) if and only ifHP(Π,A, L) |= yes.

We will consider two cases:
• Π ∪ A is consistent.

L ∈ CnR(Π ∪ A) if and only if Φ(L) ∈ Φ(CnR(Π ∪
A)) if and only if Φ(L) ∈ CnR(Φ(Π ∪ A))(see (Cec-
chi & Simari 2000)) if and only if, by lemma 1,Φ(L)
is in the minimal model ofΦ(Π ∪ A) if and only
if HP(Π,A, L) |= yes by the definition of minimal
model, the monotonicity property and the use of the
ruleyes ← Φ(L).

• Π ∪ A is inconsistent.
L ∈ CnR(Π ∪ A) = Lit if and only if there ex-
ists i, 1 ≤ i ≤ n, such thatΦ(Li) andΦ(Li) are in
Φ(CnR(Π ∪ A)) if and only if Φ(Li) andΦ(Li) are
in the minimal model ofHP(Π,A, L) if and only if
HP(Π,A, L) |= yes by definition of minimal models,
monotonicity property and the use of the ruleyes ←
Φ(Li),Φ(Li).

2. HP is computed in logarithmic space: the transformation
is quite simple, and is feasible in logarithmic space, since
rules can be generated independently of each other except
those of the formyes ← Φ(Li),Φ(Li) which depends on
the literal in the input.

ThereforeHP(Π,A, L) is a reduction fromL ∈ CnR(Π ∪
A) into propositional Horn clauses. ¥

Theorem 2 Let P = (ΠF ,ΠR ∪ ∆) a de.l.p., A ⊆ ∆, and
L a literal. Determining whetherL ∈ CnR(Π ∪ A) is P-
complete.

Proof: • Membership: Given a definite logic program
P the least fixpointT∞

P
of the operatorTP can be com-

puted in polynomial time (Papadimitriou 1994; Dantsin

et al. 2001) : the number of iterations is bounded by the
number of rules plus one. Each iteration step is feasible
in polynomial time. Thus finding the minimal model of a
logic program with just Horn clauses is inP (Dantsinet
al. 2001).
By lemma 2,L ∈ CnR(Π∪A) has been reduced to propo-
sitional logic programming. Therefore,L ∈ CnR(Π∪A)
is in P.

• Hardness:Horn rules are strict rules in ade.l.p., and the
minimal model of a definite logic programDP is equal to
CnR(DP). Therefore, by applying reduction by general-
ization, we have thatDP |= L reduce toL ∈ CnR(DP).
Propositional logic programming isP-complete (Dantsin
et al. 2001). This suffices to complete the proof.

¥

Until now we have proved that the first condition of ar-
gumentation definition isP-complete. Now we will analyze
the rest of the issues we need for computing an argument.
We will denote the cardinality of the language by|Lit| and
defeasible rules cardinality by|∆|.

In Figure 1, we present an algorithm for verifying whether
a set of defeasible rules is minimal with respect to set inclu-
sion for entail a literalL. Worst case of the minimality con-
dition is considered assuming that the argument has at most
|∆| defeasible rules, i.e.,∆ is an argument for some literal.
Computing the minimality condition involves|∆| loops ver-
ifying that L ∈ CnR(Π ∪ A′), which is in P. Thus, this
problem is solvable in polynomial time, and, therefore, it is
in P.

Finally, to check whether the set of defeasible rules is
consistent under ade.l.p., we verify that there is no atom
such that the atom and its complement are members of
CnR(Π∪A). In the worst case, whenCnR(Π∪A) is consis-
tent, this algorithm must control every atom in the signature
of thede.l.p.. Thus, to check if it is consistent is proportional
to the number of atoms|Lit|/2 and therefore it is inP.

Theorem 3 The decision problem “is a given subset of de-
feasible rules an argument for a literal under ade.l.p.?” is
P-complete.

Proof:
Membership: (sketch)From the above development it fol-
lows membership toP.
Hardness: We employ a reduction fromDP |= L, being
DP a propositional Horn program. Consider the following
transformationr(DP) = DP ′ = 〈Π,∆〉, whereΠ = DP
and∆ is empty. r is a transformation computed in loga-
rithmic space such that whenever a literalL is entailed by a
propositional Horn programDP, the decision problem “is a
given subset of∆ = ∅ an argument forL underDP ′” finish
in an accepting state.

L is in the minimal model of a propositional Horn pro-
gram if and only ifL ∈ CnR(DP) if and only if ∅ is an
argument forL, since is minimal and consistent withΠ, if
and only if “is a given subset of∆ = ∅ an argument for



L underDP ′” finish in an accepting state. Thereby estab-
lishing that the decision problem “is a given subset of de-
feasible rules an argument for a literal under ade.l.p.?” is
P-complete. ¥

Our final aim is to determine the complexity of comput-
ing the set of all the arguments under ade.l.p.. This is moti-
vated in thatGAMESAT andNOWINGAME require for play-
ing a game to compute every argument that defeats each ar-
gument introduced in a previous move. A subsetA ⊆ ∆
may be a potential argument of different literals in the lan-
guage. Thus, the maximum number of checks for potential
arguments that depends on the size of the set of defeasible
rules and on the size ofLit, is |Lit| ∗ 2|∆|.

Lemma 3 Let AP be the polynomial time needed for the
decision problem “is a given subset of defeasible rules an
argument for a literall under ade.l.p.?”. Then, the upper
bound time for computing all the arguments is|Lit| ∗ 2|∆| ∗
AP .

The result above states an exponential upper bound for
computingX , the set of all the arguments in Dung’s formal-
ism (Dung 1995).

Even though we must verify whether every subset of
∆ is an argument for every literal in the language of the
de.l.p., because the consistency condition in the defini-
tion of argument,A ⊆ ∆ cannot be an argument for a
literal and for its complement, so we will consider only
|Lit|

2
∗ 2|∆| = |Lit| ∗ 2|∆|−1 potential arguments in order to

play a game or equivalently to build the dialectical tree. This
upper bound could be improved by considering minimality
over the arguments, i.e., noA1 ⊆ ∆ would be an argument
for a literalL if A2 is an argument ofL andA2 ⊆ A1.

Finally, we consider the argument existence decision
problem.

Corollary 1 (Argument Existence)The decision problem
“whether there is an argument for a literalL under ade.l.p.”
is NP.

Proof: We can guess any subset of∆, and verify whether
this subset is an argument for a literalL underde.l.p.in poly-
nomial time. This proves membership inNP. ¥

These results contrast with those of (Parsons, Wooldridge,
& Amgoud 2003), where determining whether there is an ar-
gument for a formulah is ΣP

2 -complete. Even thought there
are some similarities between argument definitions, they dif-
fer in the underlying logic. While in DeLP approach an
argument is a subset of defeasible rules, and the inference
mechanism to obtain it is logic programming based, an ar-
gument in the formalism described in (Parsons, Wooldridge,
& Amgoud 2003) is a subset of formulas of a propositional
language, and̀ stands for classical inference.

Data Complexity for DeLP
In order to determine the upper bound for the data complex-
ity of the decision problemsGAMESAT and NOWINGAME,

we will first analyze the dialectical tree structure over the
size of the facts and the strict and defeasible rules.

The dialectical tree is explored in a complete depth first
way, as minimax does. If the maximum depth of the tree is
m, and there areb legal movements at each point, then the
time complexity will beO(bm)(Russell & Norvig 2003). If
implement the technique alpha-beta pruning, and consider-
ing that successors are examined in random order, then the
time complexity will be roughlyO(b

3m

4 )(Russell & Norvig
2003). The maximum depth of a dialectical tree for an ar-
gument under ade.l.p.with |∆| defeasible rules is2|∆|, i.e.,
we can consider every potential argument in one branch of
the tree. Any argument can appear more than once in the
tree but at most once in every branch, because of the accept-
able argumentation line definition. What about branch fac-
tor: there exists|Lit|/2 literals that can be in conflict with
the last argument. These literals may have at most2|∆| po-
tential arguments. So our branching factor is in the worst
case|Lit|/2 ∗ 2|∆|. Thus, exploring the dialectical tree as
minimax does is ofO((|Lit| ∗ 2|∆|−1)2

|∆|

).
Every time we must insert a neighbour nodeB of a node

A in the tree structure or equivalently, when a player makes
a move, we must check if it is a legal move in the game, i.e.,
if B attacks and defeatsA, and if B does not introduce in-
consistency. In order to determine whetherB is a defeater
of A, we must take into account the preference criterion be-
tween arguments. Any preference criterion defined among
arguments could be used in DeLP. For this reason, the com-
plexity class of the following decision problem “whether an
argument can be considered in the tree structure of a game”
will be left parameterized in the classC.

Theorem 4 Let C be the complexity class for the decision
problem:“whether an argument can be considered in the tree
structure of a game”. The upper bound for data complexity
of GAMESAT is NPC .

Proof: For fixedΠR ∪ ∆, the size of the dialectical tree
for an argument〈A, h〉 is polynomial in the size of the lit-
erals inΠF . Furthermore, computing each argument is in
P, and considering each argument in the tree structure is in
C. In order to decide whether a literalh belongs to the set
T of the minimal G-model, we guess for an argument ofh
such that the game played from this argument is won by the
Proponent. The number of arguments is polynomial when
ΠR ∪ ∆ is fixed, and determining whether the game is won
by the Proponent can be done with a C oracle. This proves
membership inNPC . ¥

SinceNOWINGAME is a conjunction ofGAMESAT com-
plements an immediate corollary to the result above follows
naturally.

Corollary 2 Let C be the complexity class for the decision
problem:“whether an argument can be considered in the tree
structure of a game”. The upper bound for data complexity
of NOWINGAME is co-NPC .



Decision Complexity
Problem

Is L ∈ CnR(Rules)? P-complete
Is 〈A, h〉 an argument? P-complete
Argument Existence NP

GAME Data ComplexityNPC

NOWINGAME Data Complexityco − NPC

Table 1: Problems studied, and the main complexity results
obtained.

Even though we have not analyzed in depth the complex-
ity for computing the preference criterion, we illustrate this
concept with two different cases.

In (Ches̃nevar & Maguitman 2004a; 2004b), the authors
use specificity (Simari & Loui 1992) as a syntax-based cri-
terion among conflicting arguments, preferring those argu-
ments which are more informed or more direct, in order to
assess natural language usage based on the web corpus and
to evaluate and rank search results, respectively. Computing
specificity depends strongly on the set2|Lit|.

Other DeLP implementations use a static preference re-
lation (Ches̃nevaret al. 2004). In this case, the preference
criterion is computed by comparing arguments values. Such
values are obtained through different mathematical formulas
applied to the certainty of a formula in the language. Com-
puting such preference criterion involves just a comparison
between two certainty values. However, an extra cost is con-
sidered in the argument construction procedure, since the
certainty value is computed keeping a trace of all uncertain
information used to derive a goal.

Conclusion and Future Work
We have analyzed complexity of DeLP through theGS
semantics, pointing out some relevant decision problems.
In particular, we have analyzed in depthGAMESAT and
NOWINGAME. In order to achieve our aim, we have distin-
guished database and a query from ade.l.p., and we have de-
fined data, expression and combined complexity in the con-
text of DeLP. As far as we know, argumentation systems
have not been studied yet as a query language, and, there-
fore, there is no previous data complexity analysis for de-
feasible reasoning. Table 1 summarizes the problems stud-
ied and the main complexity results obtained.

As DeLP do not assume as input the argument set, the
first results that has been established where related to argu-
ments, the movements of a game. We have focused on the
existence of an argument in order to play a game, and on ver-
ifying whether a set is an argument. We state an exponential
upper bound for the set of all the arguments. Because of the
underpinning logic of DeLP our complexity results are a bit
better than those based on classical logic.

Data complexity results onGAMESAT andNOWINGAME
give a guideline for determining expressive power for DeLP.
Since our results are parameterized, we can state a lower

bound onNP, otherwise known asΣ1
1, which coincides with

the class of properties of finite structures expressible in ex-
istential second-order logic (Fagin 1974).

When analyzing Data complexity we have fixed the query
and we have parametrized the preference criteria. Thus an
interesting topic for future research is to study to what extent
this results can be applied to others rule-based argumenta-
tion systems whose theory proof is rather similar.

As future work we will analyze combined complexity of
the decision problems introduced. We are studying the ex-
pressive power of DeLP in order to compare this system with
other non monotonic formalisms.
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